Here is a paper list containing all kinds of deep learning-based prediction of antibody. If you have a paper or resource you'd like to add, please submit a pull request or open an issue.
抗体可开发性预测: Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability 超过 200 万个天然和人工工程单链抗体序列的 40 个基于序列的 DP 和 46 个基于结构的 DP
抗体性质预测 AbPROP: Language and Graph Deep Learning for Antibody Property Prediction 图神经网络性质预测 GVP GAT
抗体序列生成: 设计 语言模型 Reprogramming Pretrained Language Models for Antibody Sequence Infilling ReprogBert BERT重编程
抗体亲和力预测: Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness 遗传算法同时最大化自然度和亲和力
抗体序列+结构预测(关注模型设计): ABDIFFUSER: FULL-ATOM GENERATION OF INVITRO FUNCTIONING ANTIBODIES 等变+扩散模型
抗体优化: Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning
抗体序列+结构预测+亲和力优化:(提到抗体数据库,关注模型设计) Conditional Antibody Design as 3D Equivariant Graph Translation 图等变模型
抗体序列+亲和力预测: De novo generation of antibody CDRH3 with a pre-trained generative large language model PALM抗体语言模型设计CDR3 Multi-Fusion Convolutional Neural Network (MF-CNN)预测亲和力
抗体序列: Generative Antibody Design for Complementary Chain Pairing Sequences through Encoder-Decoder Language Model 编码器+解码器 AntiBARTy Diffusion for Property Guided Antibody Design
结构和功能设计RFdiffusion De novo design of protein structure and function with RFdiffusion https://github.com/RosettaCommons/RFdiffusion
抗体序列+抗体抗原结构共设计(关注下如何利用序列数据,解决结构数据不足的问题): Pre-training Antibody Language Models for Antigen-Specific Computational Antibody Design ABGNN:GNN+BERT
图神经网络 End-to-End Full-Atom Antibody Design dyMEAN:等变图神经网络
Antibody-antigen Docking and Design via Hierarchical Equivariant Refinement HERN:
In vitro validated antibody design against multiple therapeutic antigens using generative inverse folding 微调PROTEINMPNN 融合ESM 反向折叠
AntiFold: Improved antibody structure design using inverse folding 反向折叠
Generative Diffusion Models for Antibody Design, Docking, and Optimization Abdesign+Abdock
Guiding diffusion models for antibody sequence and structure co-design with developability properties 开发性引导的diffab 无需重新训练的
Epitope-specific antibody design using diffusion models on the latent space of ESM embeddings 加入ESM信息的扩散模型
An Energy Based Model for Incorporating Sequence Priors for Target-Specific Antibody Design 语言模型+GNN+能量
强化学习 Stable Online and Offline Reinforcement Learning for Antibody CDRH3 Design
对接/筛选 Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking HADDOCK新论文
Evaluating Zero-Shot Scoring for In Vitro Antibody Binding Prediction with Experimental Validation 筛选方法评价 包括ESM、残差水平模型置信度(Abbuild2)、RMSD 均方根偏差、魔改dyMEAN的界面距离
SAGERank: Inductive Learning of Protein-Protein Interaction from Antibody-Antigen Recognition using Graph Sample and Aggregate Networks Framework 图神经网络对接排序
考虑边界序列重复性 An Energy Based Model for Incorporating Sequence Priors for Target-Specific Antibody Design 考虑能量
反向折叠 AntiFold: Improved antibody structure design using inverse folding 可用
In vitro validated antibody design against multiple therapeutic antigens using generative inverse folding Igdesign
蛋白质设计 HelixDiff: Hotspot-Specific Full-atom Design of Peptides Using Diffusion Models 扩散模型全原子设计
Fast non-autoregressive inverse folding with discrete diffusion 使用预训练的 ProteinMPNN 并通过扩散对其进行微调
AMP-Diffusion: Integrating Latent Diffusion with Protein Language Models for Antimicrobial Peptide Generation 将潜在扩散与蛋白质语言模型相结合以生成抗菌肽
Structure-informed Language Models Are Protein Designers
Adapter 微调plm + 结构编码条件生成 (重新掩码概率低的位置)
Full-Atom Peptide Design with Geometric Latent Diffusion
全原子潜在扩散生成结合肽