Skip to content

panda1103/Antibody-Prediction-Methods

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 

Repository files navigation

Antibody-Prediction-Methods

Description

Here is a paper list containing all kinds of deep learning-based prediction of antibody. If you have a paper or resource you'd like to add, please submit a pull request or open an issue.

抗体可开发性预测: Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability 超过 200 万个天然和人工工程单链抗体序列的 40 个基于序列的 DP 和 46 个基于结构的 DP

抗体性质预测 AbPROP: Language and Graph Deep Learning for Antibody Property Prediction 图神经网络性质预测 GVP GAT

抗体序列生成: 设计 语言模型 Reprogramming Pretrained Language Models for Antibody Sequence Infilling ReprogBert BERT重编程

抗体亲和力预测: Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness 遗传算法同时最大化自然度和亲和力

抗体序列+结构预测(关注模型设计): ABDIFFUSER: FULL-ATOM GENERATION OF INVITRO FUNCTIONING ANTIBODIES 等变+扩散模型

抗体优化: Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning

抗体序列+结构预测+亲和力优化:(提到抗体数据库,关注模型设计) Conditional Antibody Design as 3D Equivariant Graph Translation 图等变模型

抗体序列+亲和力预测: De novo generation of antibody CDRH3 with a pre-trained generative large language model PALM抗体语言模型设计CDR3 Multi-Fusion Convolutional Neural Network (MF-CNN)预测亲和力

抗体序列: Generative Antibody Design for Complementary Chain Pairing Sequences through Encoder-Decoder Language Model 编码器+解码器 AntiBARTy Diffusion for Property Guided Antibody Design

结构和功能设计RFdiffusion De novo design of protein structure and function with RFdiffusion https://github.com/RosettaCommons/RFdiffusion

抗体序列+抗体抗原结构共设计(关注下如何利用序列数据,解决结构数据不足的问题): Pre-training Antibody Language Models for Antigen-Specific Computational Antibody Design ABGNN:GNN+BERT

图神经网络 End-to-End Full-Atom Antibody Design dyMEAN:等变图神经网络

Antibody-antigen Docking and Design via Hierarchical Equivariant Refinement HERN:

In vitro validated antibody design against multiple therapeutic antigens using generative inverse folding 微调PROTEINMPNN 融合ESM 反向折叠

AntiFold: Improved antibody structure design using inverse folding 反向折叠

Generative Diffusion Models for Antibody Design, Docking, and Optimization Abdesign+Abdock

Guiding diffusion models for antibody sequence and structure co-design with developability properties 开发性引导的diffab 无需重新训练的

Epitope-specific antibody design using diffusion models on the latent space of ESM embeddings 加入ESM信息的扩散模型

An Energy Based Model for Incorporating Sequence Priors for Target-Specific Antibody Design 语言模型+GNN+能量

强化学习 Stable Online and Offline Reinforcement Learning for Antibody CDRH3 Design

对接/筛选 Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking HADDOCK新论文

Evaluating Zero-Shot Scoring for In Vitro Antibody Binding Prediction with Experimental Validation 筛选方法评价 包括ESM、残差水平模型置信度(Abbuild2)、RMSD 均方根偏差、魔改dyMEAN的界面距离

SAGERank: Inductive Learning of Protein-Protein Interaction from Antibody-Antigen Recognition using Graph Sample and Aggregate Networks Framework 图神经网络对接排序

考虑边界序列重复性 An Energy Based Model for Incorporating Sequence Priors for Target-Specific Antibody Design 考虑能量

反向折叠 AntiFold: Improved antibody structure design using inverse folding 可用

In vitro validated antibody design against multiple therapeutic antigens using generative inverse folding Igdesign

蛋白质设计 HelixDiff: Hotspot-Specific Full-atom Design of Peptides Using Diffusion Models 扩散模型全原子设计

Fast non-autoregressive inverse folding with discrete diffusion 使用预训练的 ProteinMPNN 并通过扩散对其进行微调

AMP-Diffusion: Integrating Latent Diffusion with Protein Language Models for Antimicrobial Peptide Generation 将潜在扩散与蛋白质语言模型相结合以生成抗菌肽

Structure-informed Language Models Are Protein Designers

Adapter 微调plm + 结构编码条件生成 (重新掩码概率低的位置)

Full-Atom Peptide Design with Geometric Latent Diffusion

全原子潜在扩散生成结合肽

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published