-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubgraph_dataset2.1.py
645 lines (519 loc) · 24.7 KB
/
subgraph_dataset2.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 21 14:40:31 2023
@author: Pandadada
"""
import sys
sys.modules[__name__].__dict__.clear()
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import numpy as np
# sys.path.append(os.path.realpath('../lib'))
# sys.path.append(os.path.realpath('E:/Master Thesis/FGWD_on_Graphs_subgraph/lib1')) current results
from lib1.graph import graph_colors, draw_rel, draw_transp, Graph, wl_labeling
import random
import ot
import networkx as nx
import matplotlib.pyplot as plt
import copy
from lib1.ot_distances import Fused_Gromov_Wasserstein_distance
# from ot_distances import Fused_Gromov_Wasserstein_distance,Wasserstein_distance
from lib1.data_loader import load_local_data,histog,build_noisy_circular_graph
# from FGW import init_matrix,gwloss # lib 0.0 no need
# from FGW import cal_L,tensor_matrix,gwloss
import scipy.stats as st
import math
# import pickle
import dill as pickle
import time
stopThr = 1e-09
thre1 = stopThr
thre2 = 0.05 # results not recorded
values = [1e-9,5e-9,1e-8,5e-8,1e-7,5e-7,1e-6,5e-6,
1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,
1e-1,5e-1,1.0]
# values = [1e-9,1.0]
# values = [1e-9]
values = [1e-9,1e-6,1e-3,1e-2,5e-2,
1e-1,5e-1,1.0]
# values = [1e-6,1e-3,1e-2,5e-2,
# 1e-1,5e-1]
values = [1e-20]
# values = [1e-1,5e-1,1.0]
# epsilon = 1 # threshold for the WD
Is_fig = 0
Is_info = 0
Is_create_query = 0
Is_create_query_random = 0
Is_create_query_deter = 0
# Is_check_found_subgraph = 0
# Is_check_transp = 1
N = 6 # nodes in query
# Is_fea_noise = 0 # for adding noise to query
# Is_str_noise = 0
mean_fea = 0 # number of nodes that has been changed
std_fea = 0 # zero mean Gaussian
# str_mean = 0
# str_std = 0.1
# Num = 1 # number of random graphs
# fea_metric = 'dirac'
# fea_metric = 'hamming'
fea_metric = 'sqeuclidean'
# fea_metric = 'jaccard'
# str_metric = 'shortest_path' # remember to change lib0 and cost matrix
str_metric = 'adj'
alpha1 = 0
alpha2 = 0.5
DFGW_set = []
# Percent1 = []
# Percent2 = []
Mean = []
STD = []
Lower = []
Upper = []
# dataset_n='mutag'
# dataset_n='protein'
# dataset_n='protein_notfull'
# dataset_n='aids'
# dataset_n='ptc' # color is not a tuple
# dataset_n='cox2'
# dataset_n='bzr'
dataset_n ='firstmm'
# dataset_name = 'BZR'
dataset_name = 'FIRSTMM_DB'
# dataset_name = 'deezer_europe'
# dataset_name = 'lastfm_asia'
# path='/home/pan/dataset/data/'
path='E:/Master Thesis/dataset/data/'
# X is consisted of graph objects
X,label=load_local_data(path,dataset_n,wl=0) # using the "wl" option that computes the Weisfeler-Lehman features for each nodes as shown is the notebook wl_labeling.ipynb
# we do not use WL labeling
# x=X[2]
# X = np.load('E:/Master Thesis/dataset/data/'+dataset_name+'/X_deezer.npy', allow_pickle=True)
# X = np.load('E:/Master Thesis/dataset/data/'+dataset_name+'/X_lastfm.npy', allow_pickle=True)
plt.close("all")
NumQ_for_each_graph = 10
# NumQ_for_each_graph = 1
NumG = len(X) # Number of graphs
# NumQ = NumG # Number of query graphs
# NumQ = 1
# NumG = 1
#%% create connected subgraphs/query graphs
Result_list = []
Info_list = []
for epsilon in values:
# num = 0
yes1 = 0
yes2 = 0
yes3 = 0
yes4 = 0
# DFGW = np.zeros(NumG)
# time_x= np.zeros(NumG)
# Ratio = np.zeros(NumG)
DFGW = np.zeros((NumG,NumQ_for_each_graph))
time_x= np.zeros((NumG,NumQ_for_each_graph))
Ratio = np.zeros((NumG,NumQ_for_each_graph))
Index3 = np.zeros((NumG,NumQ_for_each_graph))
missing_files_count = 0
Num_not_connected = 0
for num in range(NumG):
# for num in range(22,23):
print("num=", num)
#%%
G1 = X[num]
g1=G1.nx_graph
for numq in range(NumQ_for_each_graph):
# for numq in range(0,1):
print("numq=", numq)
#%% import query
graph_number = num
# Construct the file path
file_name = str(num) + '_' + str(numq) + '.pickle'
folder_path_1 = "E:\\Master Thesis\\dataset\\data\\"+dataset_name+"\\query_noise_fea_0_0"
file_path_1 = os.path.join(folder_path_1, file_name)
# Check if the file exists
if os.path.exists(file_path_1) == 0:
# File does not exist
print(f"File {file_name} does not exist.")
missing_files_count += 1# Load the pickle file
with open(file_path_1, 'rb') as file1:
g2_nodummy_original = pickle.load(file1)
folder_path_2 = "E:\\Master Thesis\\dataset\\data\\"+dataset_name+"\\query_noise_fea_"+str(mean_fea)+"_"+str(std_fea)+"_all"
file_path_2 = os.path.join(folder_path_2, file_name)
with open(file_path_2, 'rb') as file2:
g2_nodummy = pickle.load(file2)
#%%
N = len(g2_nodummy.nodes)
# G1 = Graph(g1)
G2_nodummy = Graph(g2_nodummy)
#%% only allow the query is connected (not used with BFS)
is_connected = nx.is_connected(g2_nodummy)
if is_connected == 0:
print("'The query graph is not connected.'")
Num_not_connected += 1
# DFGW[num] = np.nan
# time_x[num] = np.nan
# Ratio[num] = np.nan
DFGW[num,numq] = np.nan
time_x[num,numq] = np.nan
Ratio[num,numq] = np.nan
continue
# %% plot the graphs
# if Is_fig == 1:
# vmin = 0
# vmax = 9 # the range of color
# plt.figure(figsize=(8, 5))
# # create some bugs in the nx.draw_networkx, don't know why.
# draw_rel(g1, vmin=vmin, vmax=vmax, with_labels=True, draw=False)
# draw_rel(g2_nodummy, vmin=vmin, vmax=vmax,
# with_labels=True, shiftx=3, draw=False)
# plt.title('Original target graph and query graph: Color indicates the label')
# plt.show()
#%% sliding window
# diameter of query
g2_diameter = nx.diameter(g2_nodummy)
# define a center, return the longest possible length of path from the center node
def find_center_with_smallest_longest_hops(graph):
min_longest_hops = float('inf')
center_node_query = None
for node in graph.nodes():
longest_hops = max(nx.shortest_path_length(graph, source=node).values())
if longest_hops < min_longest_hops:
min_longest_hops = longest_hops
center_node_query = node
longest_path_center = min_longest_hops
return longest_path_center
start_time_center = time.time()
g2_longest_path_from_center = find_center_with_smallest_longest_hops(g2_nodummy)
end_time_center = time.time()
time_center = end_time_center - start_time_center
# Using h-diameter neighborhood hops
def create_h_hop_subgraph(graph, center_node, h):
subgraph_nodes = set([center_node])
neighbors = set([center_node])
for _ in range(h):
new_neighbors = set()
for node in neighbors:
new_neighbors.update(graph.neighbors(node))
subgraph_nodes.update(new_neighbors)
neighbors = new_neighbors
h_hop_subgraph = graph.subgraph(subgraph_nodes).copy()
return h_hop_subgraph
#%% go over every node in target
g1_subgraph_list=[]
dfgw_sub = []
transp_FGWD_sub = []
G1_subgraph_sub = []
dw_sub = []
ii=0
sliding_time = 0
for center_node in g1.nodes():
print(ii)
ii+=1
start_time = time.time()
# induced_subgraph = create_h_hop_subgraph(g1, center_node, h=math.ceil(g2_diameter/2)) # sometimes could not include the subgraph in the big graph
# induced_subgraph = create_h_hop_subgraph(g1, center_node, h=math.ceil(g2_diameter))
g1_subgraph = create_h_hop_subgraph(g1, center_node, h = g2_longest_path_from_center)
g1_subgraph_list.append(g1_subgraph)
G1_subgraph = Graph(g1_subgraph)
if len(G1_subgraph.nodes()) < len(G2_nodummy.nodes()):
print("The sliding subgraph did not get enough nodes.")
continue
G2 = copy.deepcopy(G2_nodummy)
Large = 1e6
if fea_metric == 'jaccard':
G2.add_attributes({Large: "0"}) # add dummy
elif fea_metric == 'sqeuclidean':
G2.add_attributes({Large: np.array([0]) }) # add dummy
elif fea_metric == 'dirac':
G2.add_attributes({Large: 0}) # add dummy
# %% plot the graphs
if Is_fig == 1:
vmin = 0
vmax = 9 # the range of color
plt.figure(figsize=(8, 5))
# create some bugs in the nx.draw_networkx, don't know why.
draw_rel(g1_subgraph, vmin=vmin, vmax=vmax, with_labels=True, draw=False)
draw_rel(g2_nodummy, vmin=vmin, vmax=vmax,
with_labels=True, shiftx=3, draw=False)
plt.title('Sliding subgraph and query graph: Color indicates the label')
plt.show()
# %% weights and feature metric
p1 = ot.unif(len(G1_subgraph.nodes()))
# ACTUALLY NOT USED IN THE ALGORITHM
p2_nodummy = 1/len(G1_subgraph.nodes()) * np.ones([len(G2_nodummy.nodes())])
p2 = np.append(p2_nodummy, 1-sum(p2_nodummy))
# %% use the function from FGWD all the time
thresh = 0.004
# WD
# dw, log_WD, transp_WD, M, C1, C2 = Fused_Gromov_Wasserstein_distance(
# alpha=0, features_metric=fea_metric, method='shortest_path', loss_fun='square_loss').graph_d(G1, G2, p1, p2, p2_nodummy)
# fig=plt.figure(figsize=(10,8))
# plt.title('WD coupling')
# draw_transp(G1,G2,transp_WD,shiftx=2,shifty=0.5,thresh=thresh,swipy=True,swipx=False,with_labels=True,vmin=vmin,vmax=vmax)
# plt.show()
# GWD
# dgw, log_GWD, transp_GWD, M, C1, C2 = Fused_Gromov_Wasserstein_distance(
# alpha=1, features_metric=fea_metric, method='shortest_path', loss_fun='square_loss').graph_d(G1, G2, p1, p2, p2_nodummy)
# fig=plt.figure(figsize=(10,8))
# plt.title('GWD coupling')
# draw_transp(G1,G2,transp_GWD,shiftx=2,shifty=0.5,thresh=thresh,swipy=True,swipx=False,with_labels=True,vmin=vmin,vmax=vmax)
# plt.show()
#%% Wasserstein filtering
# alpha = 0
dw, log_WD, transp_WD, M, C1, C2 = Fused_Gromov_Wasserstein_distance(
alpha=alpha1, features_metric=fea_metric, method=str_metric, loss_fun='square_loss').graph_d(G1_subgraph, G2, p1, p2, p2_nodummy, stopThr=stopThr)
if dw > epsilon:
print("filter out")
continue
dw_sub.append(dw)
#%% FGWD
# alpha = 0.5
dfgw, log_FGWD, transp_FGWD, M, C1, C2 = Fused_Gromov_Wasserstein_distance(
alpha=alpha2, features_metric=fea_metric, method=str_metric, loss_fun='square_loss').graph_d(G1_subgraph, G2, p1, p2, p2_nodummy, stopThr=stopThr)
end_time = time.time()
#%% results from all sliding subgraphs
dfgw_sub.append(dfgw)
transp_FGWD_sub.append(transp_FGWD)
G1_subgraph_sub.append(G1_subgraph)
sliding_time += end_time - start_time
#%% get the min dfgw from the sliding subgraphs
try:
dgfw_sub_min = min(dfgw_sub)
min_index = dfgw_sub.index(dgfw_sub_min)
transp_FGWD_sub_min = transp_FGWD_sub[min_index]
G1_subgraph_min = G1_subgraph_sub[min_index]
dw_sub_min = dw_sub[min_index]
except:
print("No subgraph in this graph")
dgfw_sub_min = np.nan
transp_FGWD_sub_min = np.nan
G1_subgraph_min = np.nan
dw_sub_min = np.nan
print("FGWD", dgfw_sub_min)
# print("transp", transp_FGWD_sub_min)
print("WD", dw_sub_min)
if Is_fig == 1:
vmin = 0
vmax = 9 # the range of color
fig = plt.figure(figsize=(10, 8))
plt.title('Optimal FGWD coupling')
draw_transp(G1_subgraph_min, G2, transp_FGWD_sub_min, shiftx=2, shifty=0.5, thresh=thresh,
swipy=True, swipx=False, with_labels=True, vmin=vmin, vmax=vmax)
plt.show()
#%% get the final result for one query graph
# dgfw_x_min_norm=dfgw_x_min/N # modified obj values
# dfgw_x_min = dfgw_x_min
# DFGW[num] = dgfw_sub_min
# time_x[num] = sliding_time + time_center
# print("time", time_x[num])
DFGW[num,numq] = dgfw_sub_min
time_x[num,numq] = sliding_time + time_center
print("time", time_x[num,numq])
if dgfw_sub_min < thre1:
yes1 += 1
if dgfw_sub_min < thre2:
yes2 += 1
# if graph_number == min_index_x:
# yes4+=1
# DIA.append(g2_diameter) # for different diameter
#%% check feature and structure to decide if it find an exact matching
def check_transp(transp, h1, h2, Is_info): # h1 is the big graph, h2 is the subgraph
transp_nolast = transp[:, 0:-1]
index = np.argwhere(transp_nolast == np.max(transp_nolast,axis=0))
# index = np.argwhere(transp_FGWD_sliding_min[:, 0:-1] > 1e-3)
# Get the indices that would sort the second column in ascending order
sort_indices = np.argsort(index[:, 1])
index = index[sort_indices] # sorted with the second column
# feature
nodes1=h1.nodes() # [dict]
nodes2=h2.nodes()
Keys1 = sorted(list(h1.nodes.keys())) # [list] order of nodes for cost matrices, from small to large
Keys2 = sorted(list(h2.nodes.keys()))
Fea1 = []
Fea2 = []
for i in range(index.shape[0]):
key1 = Keys1[index[i,0]]
key2 = Keys2[index[i,1]]
f1 = nodes1[key1]['attr_name']
f2 = nodes2[key2]['attr_name']
Fea1.append(f1)
Fea2.append(f2)
if Is_info:
# with ascending order of both graphs
print("Features of subgraph within the source graph:")
print(Fea1)
print("Features of the query graph:")
print(Fea2)
# structure
A1 = nx.to_numpy_array(h1, nodelist=Keys1)
A2 = nx.to_numpy_array(h2, nodelist=Keys2)
# Create a submatrix using the index_vector
a1 = A1[np.ix_(index[:,0], index[:,0])]
# Ensure that the submatrix is symmetric
a1 = np.maximum(a1, a1.T)
if Is_info:
print("Adjacency matrix within the source graph")
print(a1)
print("Adjacency matrix of query graph")
print(A2)
# check
if Fea1 != Fea2:
print("feature is different")
return False
if np.array_equal(a1, A2) == 0:
print("structure is different")
return False
return True
def check_transp2(transp): # subgraph are created with the first nodes
# n = len(transp)
M = len(transp[0]) # Assuming all rows have the same number of columns
count_satisfied = 0
for i in range(M - 1): # Iterate through the first (m-1) rows
row = transp[i]
# Check if the ith entry of the ith row (diagonal) is the maximum entry in that row
if row[i] == max(row):
count_satisfied += 1
# Calculate the ratio
ratio = count_satisfied / (M - 1) if M > 1 else 0.0
return ratio
def check_transp3(transp, ground_truth, node_indices_g1_subgraph_min): # subgraph are created randomly
# Get the number of columns
M = len(transp[0])
# Ensure the matrix has the expected number of columns
if M-1 != len(ground_truth):
raise ValueError("Matrix column count and ground truth length mismatch.")
# Count the number of matches
matches = sum(node_indices_g1_subgraph_min[np.argmax(transp[:, i])] == ground_truth[i] for i in range(M-1))
# Compute the ratio
ratio = matches / (M-1)
return ratio
#%% check if it finds the exact matching
# use the clean graph to check!
try:
if check_transp(transp_FGWD_sub_min, G1_subgraph_min.nx_graph, g2_nodummy_original, Is_info):
print("These two graphs are the same.")
Index3[num,numq]=1
yes3+=1
except:
Index3[num,numq]=0
#%% calculate the ratio
# have to know the node indices (do not need to ues the clean graph)
try:
ground_truth = sorted(list(g2_nodummy.nodes.keys()))
g1_subgraph_min = G1_subgraph_min.nx_graph
node_indices_g1_subgraph_min = sorted(list(g1_subgraph_min.nodes.keys()))
# ratio = check_transp2(transp_FGWD_sub_min)
ratio = check_transp3(transp_FGWD_sub_min, ground_truth, node_indices_g1_subgraph_min)
print("ratio", ratio)
# Ratio[num]=ratio
Ratio[num,numq]=ratio
except:
# Ratio[num] = 0
Ratio[num,numq] = 0
# %% rates of all query graphs
print('Overall:')
Effective_Num = NumG * NumQ_for_each_graph - Num_not_connected
print('Rate 1: FGWD is almost zero', yes1/Effective_Num)
print('Rate 2: find the approx matching:',yes2/Effective_Num)
print('Rate 3: the matching is exactly right', yes3/Effective_Num)
print('Rate 4: the ratio of correct nodes', np.nanmean(Ratio))
# print('STD:',np.std(DFGW))
# print('find the correct graph', yes4/NumQ)
DFGW_set.append(DFGW)
print('average time', np.nanmean(time_x))
print('Num_not_connected:', Num_not_connected)
print("number of nan in DFGW:", np.isnan(DFGW).sum())
print("mean of dfgw:", np.nanmean(DFGW))
print("std of dfgw:", np.nanstd(DFGW))
# Initialize the result list
result_list = []
# Append the rates and other statistics to the result list
result_list.append(["Rate 1: FGWD is almost zero", yes1/Effective_Num])
result_list.append(["Rate 2: find the approx matching", yes2/Effective_Num])
result_list.append(["Rate 3: the matching is exactly right", yes3/Effective_Num])
result_list.append(["Rate 4: the ratio of correct nodes", np.nanmean(Ratio)])
result_list.append(["Average time", np.nanmean(time_x)])
result_list.append(["Num_not_connected", Num_not_connected])
result_list.append(["Number of nan in DFGW", np.isnan(DFGW).sum()])
result_list.append(["Mean of DFGW", np.nanmean(DFGW)])
result_list.append(["Std of DFGW", np.nanstd(DFGW)])
Result_list.append(result_list)
Info_list.append([yes3/Effective_Num,np.nanmean(time_x)])
# Mean.append(np.mean(DFGW))
# STD.append(np.std(DFGW))
#create 95% confidence interval for population mean weight
# lower, upper = st.norm.interval(confidence=0.95, loc=np.mean(DFGW), scale=st.sem(DFGW))
# Lower.append(lower)
# Upper.append(upper)
#%% for different diameter
# # Create empty lists for each category
# category_arrays = [[] for _ in range(N)]
# # Iterate through numbers and append to respective category arrays
# for number, category in zip(DFGW, DIA):
# category_arrays[category - 1].append(number)
# # Print the arrays for each category
# for i, category_array in enumerate(category_arrays):
# Mean.append(np.mean(category_array))
# STD.append(np.std(category_array))
# Percent1.append(len([num for num in category_array if num < thre1])/len(category_array))
# Percent2.append(len([num for num in category_array if num < thre2])/len(category_array))
# #create 95% confidence interval for population mean weight
# lower, upper = st.norm.interval(confidence=0.95, loc=np.mean(category_array), scale=st.sem(category_array))
# Lower.append(lower)
# Upper.append(upper)
# %% boxplot
# fig, ax = plt.subplots()
# # ax.set_title('Hide Outlier Points')
# ax.boxplot(DFGW_set, showfliers=False, showmeans=False)
# # %% plot mean and STD
# plt.figure()
# plt.plot(np.array([0]), np.array(Mean), 'k-+')
# # plt.fill_between(np.array(NN3), np.array(Mean)-np.array(STD), np.array(Mean)+np.array(STD), alpha=0.5) # alpha here is transparency
# plt.fill_between(np.array([0]), np.array(Lower), np.array(Upper), facecolor = 'k',alpha=0.5) # alpha here is transparency
# plt.grid()
# # plt.xlabel('Size of test graph')
# # plt.xlabel('Number of features')
# plt.xlabel('Connectivity of graphs')
# plt.ylabel('Mean and 95% confidence interval')
# # %% plot percentage
# plt.figure()
# plt.plot(np.array([0]), np.array(Percent1),'k-x', label='exact match')
# plt.plot(np.array([0]), np.array(Percent2),'k--.', label='approx match')
# plt.grid()
# # plt.xlabel('Size of test graph')
# # plt.xlabel('Number of features')
# plt.xlabel('Connectivity of graphs')
# plt.ylabel('Success rate')
# plt.legend()
#%% subsitute back the transport matrix
# n1 = len(G1.nodes())
# n2 = len(G2.nodes())
# constC,hC1,hC2=init_matrix(C1,
# C2[0:n2-1,0:n2-1],
# transp_FGWD[:,0:len(transp_FGWD[0])-1],
# p1,
# p2_nodummy,
# loss_fun='square_loss')
# check_gwloss=gwloss(constC,hC1,hC2,transp_FGWD)
# print(check_gwloss)
# check_wloss=np.sum(transp_FGWD*M)
# print(check_wloss)
# check_fgwloss = (1-alpha)*check_wloss+alpha*check_gwloss
# print(check_fgwloss)
# %% subsitute back the transport matrix
# n1 = len(G1.nodes())
# n2 = len(G2.nodes())
# # constC,hC1,hC2=init_matrix(C1,
# # C2[0:n2-1,0:n2-1],
# # transp_FGWD[:,0:len(transp_FGWD[0])-1],
# # p1,
# # p2_nodummy,
# # loss_fun='square_loss')
# # check_gwloss=gwloss(constC,hC1,hC2,transp_FGWD)
# check_gwloss=gwloss(cal_L(C1,C2),transp_FGWD)
# print(check_gwloss)
# check_wloss=np.sum(transp_FGWD*M)
# print(check_wloss)
# check_fgwloss = (1-alpha)*check_wloss+alpha*check_gwloss
# print(check_fgwloss)