-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_model_and_see_val.py
131 lines (95 loc) · 4.77 KB
/
load_model_and_see_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tqdm
from meta_neural_network_architectures import VGGReLUNormNetwork
from inner_loop_optimizers import LSLRGradientDescentLearningRule
import csv
from utils.storage import build_experiment_folder, save_statistics, save_to_json
def set_torch_seed(seed):
rng = np.random.RandomState(seed=seed)
torch_seed = rng.randint(0, 999999)
torch.manual_seed(seed=torch_seed)
return rng
class ModelLoadSee(object):
def __init__(self, args, data, model, device):
self.args, self.device = args, device
self.model = model
self.saved_models_filepath, self.logs_filepath, self.samples_filepath = build_experiment_folder(
experiment_name=self.args.experiment_name
)
once = True
for i in range(1, 101):
checkpoint = os.path.join(self.saved_models_filepath, f"train_model_{i}")
if os.path.exists(checkpoint):
#print("WHY")
self.state = \
self.model.load_model(model_save_dir=self.saved_models_filepath, model_name="train_model",
model_idx=i)
self.start_epoch = int(self.state['current_iter'] / self.args.total_iter_per_epoch)
#print("ITer: ", self.state['current_iter'])
if once:
self.data = data(args=args, current_iter=self.state['current_iter'])
total_losses = dict()
with tqdm.tqdm(total=int(self.args.num_evaluation_tasks / self.args.batch_size)) as pbar_val:
for _, val_sample in enumerate(
self.data.get_val_batches(
total_batches=int(self.args.num_evaluation_tasks / self.args.batch_size),
augment_images=False)):
val_losses, total_losses = self.evaluation_iteration(val_sample=val_sample,
total_losses=total_losses,
pbar_val=pbar_val, phase='val')
print(val_losses)
val_losses['epoch'] = self.start_epoch
if once:
once = False
self.save_to_file(val_losses, "re_sum_val.csv", True)
else:
self.save_to_file(val_losses, "re_sum_val.csv")
def evaluation_iteration(self, val_sample, total_losses,pbar_val, phase):
x_support_set, x_target_set, y_support_set, y_target_set, seed, classes_sel = val_sample
data_batch = (
x_support_set, x_target_set, y_support_set, y_target_set)
logging_dict = dict()
epoch = self.start_epoch
logging_dict['epoch'] = epoch
logging_dict['sampled classes'] = classes_sel
losses, _ = self.model.run_validation_iter(data_batch=data_batch, logging_dict=logging_dict, epoch = epoch-1)
#print("OK ev it losses: ", losses)
for key, value in zip(list(losses.keys()), list(losses.values())):
if key not in total_losses:
total_losses[key] = [float(value)]
else:
total_losses[key].append(float(value))
val_losses = self.build_summary_dict(total_losses=total_losses)
val_output_update = self.build_string_for_pbar(losses)
pbar_val.update(1)
pbar_val.set_description(
"val_phase {} --> {}".format(epoch, val_output_update))
return val_losses, total_losses
def build_summary_dict(self, total_losses):
summary_losses = dict()
for key in total_losses:
summary_losses['{}_{}_mean'.format("val", key)] = np.mean(total_losses[key])
summary_losses['{}_{}_std'.format("val", key)] = np.std(total_losses[key])
return summary_losses
def build_string_for_pbar(self, losses):
output_string=""
for key, value in zip(list(losses.keys()),list(losses.values())):
if "loss" in key or "accuracy" in key:
value = float(value)
output_string += "{}: {:.4f} ".format(key, value)
return output_string
def save_to_file(self, dict_to_save, file_to_save="re_sum_val.csv", create_new_csv=False):
if create_new_csv:
with open(file_to_save, 'w') as f:
writer = csv.writer(f)
writer.writerow( list(dict_to_save.keys()) )
writer.writerow( list(dict_to_save.values()) )
else:
with open(file_to_save, 'a') as f:
writer = csv.writer(f)
writer.writerow( list(dict_to_save.values()) )