-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLangchain-gradio-Qwen.py
65 lines (40 loc) · 1.55 KB
/
Langchain-gradio-Qwen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import json
from langchain.document_loaders import UnstructuredFileLoader
from Qwen import Qwen
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.chains import RetrievalQA
import gradio as gr
def load_data(data_path):
filepath=data_path
loader = UnstructuredFileLoader(file_path=filepath)
docs = loader.load()
# 文件分割
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
docs = text_splitter.split_documents(docs)
return docs
def loadembedding(model_name):
# 构建向量数据库
model_kwargs = {'device': 'cuda:0'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
embedding = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embedding
def chat(query,history):
qa = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=retriever)
response = qa.run(query)
print(response)
return response
api_key=''
filepath = "E:\Langchain-CHAT\Langchain-Learning\data\\test.txt" #文件路径
embedding_name="E:\ChatGLM3-6B\embedding\\bge-large-zh" #向量路径
docs=load_data(filepath) #加载数据
llm=Qwen(api_key=api_key) #加载模型
embedding=loadembedding(embedding_name) #加载embedding向量
db=FAISS.from_documents(docs,embedding)
retriever=db.as_retriever()
gr.ChatInterface(chat).launch(inbrowser=True)