-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_utils.py
367 lines (319 loc) · 13.3 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import enum
from enum import Enum
import json
import numpy as np
import re
import torch
from typing import List, NamedTuple
from external_cache import get_node_features
@enum.unique
class CommentCategory(Enum):
Return = 0
Param = 1
Summary = 2
@enum.unique
class DiffEdgeType(Enum):
PARENT = 0
CHILD = 1
SUBTOKEN_CHILD = 2
SUBTOKEN_PARENT = 3
PREV_SUBTOKEN = 4
NEXT_SUBTOKEN = 5
ALIGNED_NEIGHBOR = 6
@enum.unique
class SrcType(Enum):
KEEP = 0
INSERT = 1
DELETE = 2
REPLACE_OLD = 3
REPLACE_NEW = 4
MOVE = 5
class DiffTreeNode:
def __init__(self, value, attribute, src, is_leaf):
self.value = value
self.node_id = -1
self.parents = []
self.attribute = attribute
self.src = src
self.is_leaf = is_leaf
self.children = []
self.prev_siblings = []
self.next_siblings = []
self.aligned_neighbors = []
self.action_type = None
self.prev_tokens = []
self.next_tokens = []
self.subtokens = []
self.subtoken_children = []
self.subtoken_parents = []
self.prev_subtokens = []
self.next_subtokens = []
def to_json(self):
return {
'value': self.value,
'node_id': self.node_id,
'parent_ids': [p.node_id for p in self.parents],
'attribute': self.attribute,
'src': self.src,
'is_leaf': self.is_leaf,
'children_ids': [c.node_id for c in self.children],
'prev_sibling_ids': [p.node_id for p in self.prev_siblings],
'next_sibling_ids': [n.node_id for n in self.next_siblings],
'aligned_neighbor_ids': [n.node_id for n in self.aligned_neighbors],
'action_type': self.action_type,
}
@property
def is_identifier(self):
return self.is_leaf and self.attribute == 'SimpleName'
class DiffAST:
def __init__(self, ast_root):
self.node_cache = set()
self.root = ast_root
self.nodes = []
self.traverse(self.root)
def traverse(self, curr_node):
if curr_node not in self.node_cache:
self.node_cache.add(curr_node)
curr_node.node_id = len(self.nodes)
self.nodes.append(curr_node)
for child in curr_node.subtoken_children:
self.traverse(child)
for child in curr_node.children:
self.traverse(child)
def to_json(self):
return [n.to_json() for n in self.nodes]
@property
def leaves(self):
return [n for n in self.nodes if n.is_leaf]
@classmethod
def from_json(cls, obj):
nodes = []
for node_obj in obj:
node = DiffTreeNode(node_obj['value'], node_obj['attribute'], node_obj['src'], False)
if 'action_type' in node_obj:
node.action_type = node_obj['action_type']
nodes.append(node)
new_nodes = []
for n, node_obj in enumerate(obj):
nodes[n].parents = [nodes[i] for i in node_obj['parent_ids']]
nodes[n].children = [nodes[i] for i in node_obj['children_ids']]
nodes[n].prev_siblings = [nodes[i] for i in node_obj['prev_sibling_ids']]
nodes[n].next_siblings = [nodes[i] for i in node_obj['next_sibling_ids']]
nodes[n].aligned_neighbors = [nodes[i] for i in node_obj['aligned_neighbor_ids']]
new_nodes.append(nodes[n])
if len(nodes[n].children) == 0:
nodes[n].is_leaf = True
curr = re.sub('([a-z0-9])([A-Z])', r'\1 \2', nodes[n].value).split()
new_curr = []
for c in curr:
by_symbol = re.findall(r"[a-zA-Z0-9]+|[^\sa-zA-Z0-9]|[^_\sa-zA-Z0-9]", c.strip())
new_curr = new_curr + by_symbol
nodes[n].subtokens = [s.lower() for s in new_curr]
if len(nodes[n].subtokens) > 1:
for s in nodes[n].subtokens:
sub_node = DiffTreeNode(s, '', nodes[n].src, True)
sub_node.action_type = nodes[n].action_type
sub_node.subtoken_parents.append(nodes[n])
if len(nodes[n].subtoken_children) > 0:
nodes[n].subtoken_children[-1].next_subtokens.append(sub_node)
sub_node.prev_subtokens.append(nodes[n].subtoken_children[-1])
nodes[n].subtoken_children.append(sub_node)
new_nodes.append(sub_node)
nodes[n].value = nodes[n].value.lower()
return cls(new_nodes[0])
def insert_graph(batch, ex, ast, vocabulary, use_features, max_ast_length):
batch.root_ids.append(batch.num_nodes)
graph_node_positions = []
for n, node in enumerate(ast.nodes):
batch.graph_ids.append(batch.num_graphs)
batch.is_internal.append(not node.is_leaf)
batch.value_lookup_ids.append(vocabulary.get_id_or_unk(node.value))
if node.action_type == 'Insert':
src_type = SrcType.INSERT
elif node.action_type == 'Delete':
src_type = SrcType.DELETE
elif node.action_type == 'Move':
src_type = SrcType.MOVE
elif node.src == 'old' and node.action_type == 'Update':
src_type = SrcType.REPLACE_OLD
elif node.src == 'new' and node.action_type == 'Update':
src_type = SrcType.REPLACE_NEW
else:
src_type = SrcType.KEEP
batch.src_type_ids.append(src_type.value)
graph_node_positions.append(batch.num_nodes + node.node_id)
for parent in node.parents:
if parent.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.PARENT.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + parent.node_id))
for child in node.children:
if child.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.CHILD.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + child.node_id))
for subtoken_parent in node.subtoken_parents:
if subtoken_parent.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.SUBTOKEN_PARENT.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + subtoken_parent.node_id))
for subtoken_child in node.subtoken_children:
if subtoken_child.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.SUBTOKEN_CHILD.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + subtoken_child.node_id))
for next_subtoken in node.next_subtokens:
if next_subtoken.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.NEXT_SUBTOKEN.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + next_subtoken.node_id))
for prev_subtoken in node.prev_subtokens:
if prev_subtoken.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.PREV_SUBTOKEN.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + prev_subtoken.node_id))
if len(batch.edges) == len(DiffEdgeType):
for aligned_neighbor in node.aligned_neighbors:
if aligned_neighbor.node_id < len(ast.nodes):
batch.edges[DiffEdgeType.ALIGNED_NEIGHBOR.value].append(
(batch.num_nodes + node.node_id, batch.num_nodes + aligned_neighbor.node_id))
if use_features:
node_features = get_node_features(ast.nodes, ex, max_ast_length)
batch.node_features.extend(node_features)
batch.node_positions.append(graph_node_positions)
batch.num_nodes_per_graph.append(len(ast.nodes))
batch.num_nodes += len(ast.nodes)
batch.num_graphs += 1
return batch
class GraphMethodBatch:
def __init__(self, graph_ids, value_lookup_ids, src_type_ids, root_ids, is_internal,
edges, num_graphs, num_nodes, node_features, node_positions, num_nodes_per_graph):
self.graph_ids = graph_ids
self.value_lookup_ids = value_lookup_ids
self.src_type_ids = src_type_ids
self.root_ids = root_ids
self.is_internal = is_internal
self.edges = edges
self.num_graphs = num_graphs
self.num_nodes = num_nodes
self.node_features = node_features
self.node_positions = node_positions
self.num_nodes_per_graph = num_nodes_per_graph
def initialize_graph_method_batch(num_edges):
return GraphMethodBatch(
graph_ids = [],
value_lookup_ids = [],
src_type_ids = [],
root_ids = [],
is_internal = [],
edges = [[] for _ in range(num_edges)],
num_graphs = 0,
num_nodes = 0,
node_features = [],
node_positions = [],
num_nodes_per_graph = []
)
def tensorize_graph_method_batch(batch, device, max_num_nodes_per_graph):
node_positions = np.zeros([batch.num_graphs, max_num_nodes_per_graph], dtype=np.int64)
for g in range(batch.num_graphs):
graph_node_positions = batch.node_positions[g]
node_positions[g,:len(graph_node_positions)] = graph_node_positions
node_positions[g,len(graph_node_positions):] = batch.root_ids[g]
return GraphMethodBatch(
torch.tensor(batch.graph_ids, dtype=torch.int64, device=device),
torch.tensor(batch.value_lookup_ids, dtype=torch.int64, device=device),
torch.tensor(batch.src_type_ids, dtype=torch.int64, device=device),
torch.tensor(batch.root_ids, dtype=torch.int64, device=device),
torch.tensor(batch.is_internal, dtype=torch.uint8, device=device),
batch.edges, batch.num_graphs, batch.num_nodes,
torch.tensor(batch.node_features, dtype=torch.float32, device=device),
torch.tensor(node_positions, dtype=torch.int64, device=device),
torch.tensor(batch.num_nodes_per_graph, dtype=torch.int64, device=device))
class GenerationBatchData(NamedTuple):
"""Stores tensorized batch used in generation model."""
code_ids: torch.Tensor
code_lengths: torch.Tensor
trg_nl_ids: torch.Tensor
trg_extended_nl_ids: torch.Tensor
trg_nl_lengths: torch.Tensor
invalid_copy_positions: torch.Tensor
input_str_reps: List[List[str]]
input_ids: List[List[str]]
class UpdateBatchData(NamedTuple):
"""Stores tensorized batch used in edit model."""
code_ids: torch.Tensor
code_lengths: torch.Tensor
old_nl_ids: torch.Tensor
old_nl_lengths: torch.Tensor
trg_nl_ids: torch.Tensor
trg_extended_nl_ids: torch.Tensor
trg_nl_lengths: torch.Tensor
invalid_copy_positions: torch.Tensor
input_str_reps: List[List[str]]
input_ids: List[List[str]]
code_features: torch.Tensor
nl_features: torch.Tensor
labels: torch.Tensor
graph_batch: GraphMethodBatch
class EncoderOutputs(NamedTuple):
"""Stores tensorized batch used in edit model."""
encoder_hidden_states: torch.Tensor
masks: torch.Tensor
encoder_final_state: torch.Tensor
code_hidden_states: torch.Tensor
code_masks: torch.Tensor
old_nl_hidden_states: torch.Tensor
old_nl_masks: torch.Tensor
old_nl_final_state: torch.Tensor
attended_old_nl_final_state: torch.Tensor
class Example(NamedTuple):
"""Data format for examples used in generation model."""
id: str
old_comment: str
old_comment_tokens: List[str]
new_comment: str
new_comment_tokens: List[str]
old_code: str
old_code_tokens: List[str]
new_code: str
new_code_tokens: List[str]
class DiffExample(NamedTuple):
id: str
label: int
comment_type: str
old_comment_raw: str
old_comment_subtokens: List[str]
new_comment_raw: str
new_comment_subtokens: List[str]
span_minimal_diff_comment_subtokens: List[str]
old_code_raw: str
old_code_subtokens: List[str]
new_code_raw: str
new_code_subtokens: List[str]
span_diff_code_subtokens: List[str]
token_diff_code_subtokens: List[str]
class DiffASTExample(NamedTuple):
id: str
label: int
comment_type: str
old_comment_raw: str
old_comment_subtokens: List[str]
new_comment_raw: str
new_comment_subtokens: List[str]
span_minimal_diff_comment_subtokens: List[str]
old_code_raw: str
old_code_subtokens: List[str]
new_code_raw: str
new_code_subtokens: List[str]
span_diff_code_subtokens: List[str]
token_diff_code_subtokens: List[str]
old_ast: DiffAST
new_ast: DiffAST
diff_ast: DiffAST
def get_processed_comment_sequence(comment_subtokens):
"""Returns sequence without tag string. Tag strings are excluded for evaluation purposes."""
if len(comment_subtokens) > 0 and comment_subtokens[0] in ['@param', '@return']:
return comment_subtokens[1:]
return comment_subtokens
def get_processed_comment_str(comment_subtokens):
"""Returns string without tag string. Tag strings are excluded for evaluation purposes."""
return ' '.join(get_processed_comment_sequence(comment_subtokens))
def read_full_examples_from_file(filename):
"""Reads in data in the format used for generation model."""
with open(filename) as f:
data = json.load(f)
return [Example(**d) for d in data]