-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMakefile
61 lines (52 loc) · 1.64 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
ROOT_DIR ?= $(shell pwd)
APPLICATION_NAME ?= ml_project
airflow_up:
export PROJECT_DIR=${PROJECT_DIR}
sudo docker compose \
--file airflow/docker-compose.yaml \
--env-file airflow/.env.airflow up
airflow_down:
sudo docker-compose \
--file airflow/docker-compose.yaml \
--env-file airflow/.env.airflow down
build:
cd ${APPLICATION_NAME}; \
sudo docker build --tag ${APPLICATION_NAME} .
test:
sudo docker run \
${APPLICATION_NAME} python -m pytest test
transform:
sudo docker run \
-v ${ROOT_DIR}/bucket/data:/home/data \
-v ${ROOT_DIR}/bucket/model:/home/model \
--env PARAM_TEST_SIZE=0.2 \
--env PARAM_RANDOM_STATE=0 \
--env INPUT_DATA_PATH='data/iris.csv' \
--env OUTPUT_TEST_PATH='data/test_iris.csv' \
--env OUTPUT_TRAIN_PATH='data/train_iris.csv' \
${APPLICATION_NAME} sh transform.sh
train:
sudo docker run \
-v ${ROOT_DIR}/bucket/data:/home/data \
-v ${ROOT_DIR}/bucket/model:/home/model \
--env PARAM_MAX_ITER=100 \
--env DATA_PATH='data/iris.csv' \
--env MODEL_PATH='model/model.pkl' \
${APPLICATION_NAME} sh train.sh
predict_server_up:
sudo docker run \
--name ml_project \
-p 8000:8000 \
-v ${ROOT_DIR}/bucket/data:/home/data \
-v ${ROOT_DIR}/bucket/model:/home/model \
--env PORT=8000 \
--env MODEL_PATH='model/model.pkl' \
${APPLICATION_NAME} sh predict.sh
predict_server_down:
sudo docker kill ml_project
sudo docker rm ml_project
request:
curl -X POST \
-H 'Content-Type: application/json' \
-d '{"instances": [{"SepalLengthCm": [1],"SepalWidthCm" : [1],"PetalLengthCm": [1],"PetalWidthCm" : [1]}], "parameters": []}' \
http://localhost:8000/predict