-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprecompute_collection_mia_scores.py
131 lines (110 loc) · 4.66 KB
/
precompute_collection_mia_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# %%
import logging
logging.basicConfig(level='ERROR')
import argparse
import json
import os
import random
import zlib
import numpy as np
import torch
from datasets import concatenate_datasets, load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
'''
This script uses the first paragraph of 2048 tokens from each document in the collection to compute the MIA scores.
'''
# %%
def calculatePerplexity(sentence, model, tokenizer):
"""
exp(loss)
"""
encodings = tokenizer(sentence, return_tensors='pt', truncation=True, max_length=2048)
if model.device.type == "cuda":
encodings = {k: v.cuda() for k, v in encodings.items()}
with torch.no_grad():
outputs = model(**encodings, labels=encodings['input_ids'])
loss, logits = outputs[:2]
'''
extract logits:
'''
# Apply softmax to the logits to get probabilities
probabilities = torch.nn.functional.log_softmax(logits, dim=-1)
# probabilities = torch.nn.functional.softmax(logits, dim=-1)
all_prob = []
input_ids_processed = encodings['input_ids'][0][1:]
for i, token_id in enumerate(input_ids_processed):
probability = probabilities[0, i, token_id].item()
all_prob.append(probability)
return torch.exp(loss).item(), all_prob, loss.item()
# %%
# in run.py you have a variant of this function with one more MIA: ppl/Ref_ppl
def inference(model1, tokenizer1, text):
pred = {}
p1, all_prob, p1_likelihood = calculatePerplexity(text, model1, tokenizer1)
p_lower, _, p_lower_likelihood = calculatePerplexity(text.lower(), model1, tokenizer1)
# ppl
pred["ppl"] = p1
# Ratio of log ppl of lower-case and normal-case
pred["ppl/lowercase_ppl"] = -(np.log(p_lower) / np.log(p1)).item()
# Ratio of log ppl of large and zlib
zlib_entropy = len(zlib.compress(bytes(text, 'utf-8')))
pred["ppl/zlib"] = np.log(p1)/zlib_entropy
# min-k prob
for ratio in [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]:
k_length = int(len(all_prob)*ratio)
topk_prob = np.sort(all_prob)[:k_length]
pred[f"Min_{ratio*100}% Prob"] = -np.mean(topk_prob).item()
return pred
# %%
def create_text(x):
conversation = x['conversations']
text = ""
for message in conversation:
text += message['from'] + ": " + message['value'] + "\n"
return {"text": text}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default="EleutherAI/pythia-2.8b")
parser.add_argument("--dataset_name", type=str, default="haritzpuerto/the_pile_00_arxiv")
parser.add_argument("--filter_outliers", action="store_true")
parser.add_argument("--min_chars", type=int, default=100)
parser.add_argument("--output_path", type=str)
parser.add_argument("--cache_dir", type=str, default="/tmp")
parser.add_argument("--seed", type=int, default=0)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
random.seed(args.seed)
# %%
model1 = AutoModelForCausalLM.from_pretrained(args.model_name, return_dict=True, device_map='auto', torch_dtype=torch.bfloat16, cache_dir=args.cache_dir)
model1.eval()
tokenizer1 = AutoTokenizer.from_pretrained(args.model_name)
# %%
ds = load_dataset(args.dataset_name)
if args.filter_outliers:
# removing outlier docs
ds['train'] = ds['train'].filter(lambda x: len(x["text"]) > args.min_chars)
ds['validation'] = ds['validation'].filter(lambda x: len(x["text"]) > args.min_chars)
ds['test'] = ds['test'].filter(lambda x: len(x["text"]) > args.min_chars)
nonmembers = concatenate_datasets([ds["validation"], ds["test"]])
members = ds["train"].shuffle(seed=args.seed).select(range(len(nonmembers)))
nonmembers.save_to_disk(os.path.join(args.output_path, "nonmembers"))
members.save_to_disk(os.path.join(args.output_path, "members"))
# %%
data_points_members = []
for text in tqdm(members['text']):
mia_features = inference(model1, tokenizer1, text)
data_points_members.append({'pred': mia_features, 'label': 1})
torch.cuda.empty_cache()
with open(os.path.join(args.output_path, "mia_members.jsonl"), "w") as f:
for dp in data_points_members:
f.write(json.dumps(dp) + "\n")
data_points_nonmembers = []
for text in tqdm(nonmembers['text']):
mia_features = inference(model1, tokenizer1, text)
data_points_nonmembers.append({'pred': mia_features, 'label': 0})
torch.cuda.empty_cache()
with open(os.path.join(args.output_path, "mia_nonmembers.jsonl"), "w") as f:
for dp in data_points_nonmembers:
f.write(json.dumps(dp) + "\n")