-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwiselyChatSupportFinal.py
114 lines (86 loc) · 3.6 KB
/
wiselyChatSupportFinal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import streamlit as st
import os
from dotenv import load_dotenv
from constants import openai_key
from langchain.text_splitter import CharacterTextSplitter
#from langchain.embeddings import OpenAIEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
#from langchain.llms import OpenAI
#from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationBufferWindowMemory
#from langchain.memory import ConversationSummaryBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template, page_bg_img
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
os.environ["OPENAI_API_KEY"]=openai_key
def get_wisely_public_data():
text = ""
data = TextLoader("custom-data.txt")
#loader = DirectoryLoader('<Directory>')
#loader.load()
docs = data.load()
for doc in docs:
text += doc.page_content
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)
#Chroma.from_documents(docs, embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI(temperature=0.8)
#llm = OpenAI(temperature=0.8, top_p= 0.6 )
memory = ConversationBufferWindowMemory(
memory_key='chat_history', return_messages=True, K=3) # K is a window size, Its going to store last three conversations
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv("constants.py")
st.set_page_config(page_title="Wisely Customer Service Center",
page_icon="images/logo-wisely-color.png")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = ["Welcome to Wisely Support, How may i assist yoy today?"]
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Wisely Customer Service Center :images/logo-wisely-color.png:")
st.markdown(page_bg_img, unsafe_allow_html=True)
user_question = st.text_input("Ask a question about Wisely:")
if user_question:
handle_userinput(user_question)
# get Wisely Data
raw_text = get_wisely_public_data()
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()