-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVGAE_cuda.py
787 lines (651 loc) · 30.5 KB
/
VGAE_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
from pymysql import connect
from pandas import DataFrame
from numpy import zeros, int64, int32, float64, float32, multiply, dot, identity, sum
from itertools import permutations
from math import log
import torch
import gc
db_name = 'imdb'
db = db_name
host = 'database-2.cxcqxpvbnnwo.us-east-2.rds.amazonaws.com'
connection = connect(host=host, user="admin", password="newPassword", db=db)
cursor = connection.cursor()
db_setup = db_name + "_setup"
connection_setup = connect(host=host, user="admin", password="newPassword", db=db_setup)
cursor_setup = connection_setup.cursor()
db_bn = db_name + "_BN"
connection_bn = connect(host=host, user="admin", password="newPassword", db=db_bn)
cursor_bn = connection_bn.cursor()
keys = {}
cursor_setup.execute("SELECT TABLE_NAME FROM EntityTables");
entity_tables = cursor_setup.fetchall()
entities = {}
for i in entity_tables:
cursor.execute("SELECT * FROM " + i[0])
rows = cursor.fetchall()
cursor.execute("SHOW COLUMNS FROM " + db + "." + i[0])
columns = cursor.fetchall()
entities[i[0]] = DataFrame(rows, columns=[columns[j][0] for j in range(len(columns))])
cursor_setup.execute("SELECT COLUMN_NAME FROM EntityTables WHERE TABLE_NAME = " + "'" + i[0] + "'")
key = cursor_setup.fetchall()
keys[i[0]] = key[0][0]
cursor_setup.execute("SELECT TABLE_NAME FROM RelationTables")
relation_tables = cursor_setup.fetchall()
relations = {}
for i in relation_tables:
cursor.execute("SELECT * FROM " + i[0])
rows = cursor.fetchall()
cursor.execute("SHOW COLUMNS FROM " + db + "." + i[0])
columns = cursor.fetchall()
relations[i[0]] = DataFrame(rows, columns=[columns[j][0] for j in range(len(columns))])
cursor_setup.execute("SELECT COLUMN_NAME FROM ForeignKeyColumns WHERE TABLE_NAME = " + "'" + i[0] + "'")
key = cursor_setup.fetchall()
keys[i[0]] = key[0][0], key[1][0]
relation_names = tuple(i[0] for i in relation_tables)
indices = {}
for i in entity_tables:
cursor_setup.execute("SELECT COLUMN_NAME FROM EntityTables WHERE TABLE_NAME = '" + i[0] + "'")
key = cursor_setup.fetchall()[0][0]
indices[key] = {}
for index, row in entities[i[0]].iterrows():
indices[key][row[key]] = index
import torch
matrices = {}
for i in relation_tables:
cursor_setup.execute("SELECT REFERENCED_TABLE_NAME FROM ForeignKeyColumns WHERE TABLE_NAME = '" + i[0] + "'")
reference = cursor_setup.fetchall()
shape = (len(entities[reference[0][0]].index), len(entities[reference[1][0]].index))
matrices[i[0]] = torch.zeros(shape, dtype=torch.float32, device = 'cuda')
indices = {}
for i in entity_tables:
cursor_setup.execute("SELECT COLUMN_NAME FROM EntityTables WHERE TABLE_NAME = '" + i[0] + "'")
key = cursor_setup.fetchall()[0][0]
indices[key] = {}
for index, row in entities[i[0]].iterrows():
indices[key][row[key]] = index
for i in relation_tables:
cursor_setup.execute("SELECT COLUMN_NAME FROM ForeignKeyColumns WHERE TABLE_NAME = '" + i[0] + "'")
key = cursor_setup.fetchall()
cursor_setup.execute("SELECT COLUMN_NAME, REFERENCED_COLUMN_NAME FROM ForeignKeyColumns WHERE TABLE_NAME = '" + i[0] + "'")
reference = cursor_setup.fetchall()
rows_indices = []
cols_indices = []
for index, row in relations[i[0]].iterrows():
row_index = indices[reference[0][1]][row[key[0][0]]]
col_index = indices[reference[1][1]][row[key[1][0]]]
rows_indices.append(row_index)
cols_indices.append(col_index)
rows_indices_tensor = torch.tensor(rows_indices, dtype=torch.long)
cols_indices_tensor = torch.tensor(cols_indices, dtype=torch.long)
matrices[i[0]][rows_indices_tensor, cols_indices_tensor] = 1
cursor_setup.execute("SELECT COLUMN_NAME, TABLE_NAME FROM AttributeColumns")
attribute_columns = cursor_setup.fetchall()
attributes = {}
for i in attribute_columns:
attributes[i[0]] = i[1]
cursor_bn.execute("SELECT DISTINCT child FROM Final_Path_BayesNets_view")
childs = cursor_bn.fetchall()
rules = []
multiples = []
states = []
functors = {}
variables = {}
nodes = {}
masks = {}
base_indices = []
mask_indices = []
sort_indices = []
stack_indices = []
values = []
for i in range(len(childs)):
rule = [childs[i][0]]
cursor_bn.execute("SELECT parent FROM Final_Path_BayesNets_view WHERE child = " + "'" + childs[i][0] + "'")
# print(parents)
parents = cursor_bn.fetchall()
for j in parents:
if j[0] != '':
rule += [j[0]]
# print(j[0])
rules.append(rule)
# print(rule)
# print('---')
# print(rules)
if len(rule) == 1:
multiples.append(0)
else:
multiples.append(1)
relation_check = 0
for j in rule:
if j.find(',') != -1:
relation_check = 1
functor = {}
variable = {}
node = {}
state = []
mask = {}
unmasked_variables = []
for j in range(len(rule)):
fun = rule[j].split('(')[0]
functor[j] = fun
# print(functor[j])
if rule[j].find(',') == -1:
var = rule[j].split('(')[1][:-1]
variable[j] = var
node[j] = var[:-1]
# print(var)
if relation_check == 0:
unmasked_variables.append(var)
state.append(0)
else:
mas = []
for k in rule:
func = k.split('(')[0]
if func not in relation_names:
func = attributes[func]
# print(func)
if k.find(',') != -1 and k.find(var) != -1:
unmasked_variables.append(k.split('(')[1][:-1])
mas.append([func, k.split('(')[1].split(',')[0], k.split('(')[1].split(',')[1][:-1]])
mask[j] = mas
state.append(1)
else:
unmasked_variables.append(rule[j].split('(')[1][:-1])
if fun in relation_names:
state.append(2)
else:
state.append(3)
functors[i] = functor
variables[i] = variable
nodes[i] = node
states.append(state)
masks[i] = mask
masked_variables = [unmasked_variables[0]]
base_indice = [0]
mask_indice = []
for j in range(1, len(unmasked_variables)):
mask_check = 0
for k in range(len(masked_variables)):
if unmasked_variables[j] == unmasked_variables[k]:
mask_indice.append([k, j])
mask_check = 1
if mask_check == 0:
base_indice.append(j)
masked_variables.append(unmasked_variables[j])
sort_indice = []
sorted_variables = []
if relation_check == 0:
sort_indice.append([False, 0])
sorted_variables.append(masked_variables[0])
else:
indices_permutations = list(permutations(range(len(masked_variables))))
variables_permutations = list(permutations(masked_variables))
for j in range(len(variables_permutations)):
indices_chain = []
variables_chain = []
first = variables_permutations[j][0].split(',')[0]
second = variables_permutations[j][0].split(',')[1]
indices_chain.append([False, indices_permutations[j][0]])
variables_chain.append(variables_permutations[j][0])
untransposed_check = 1
transposed_check = 1
if len(variables_permutations[j]) > 1:
for k in range(1, len(variables_permutations[j])):
next_first = variables_permutations[j][k].split(',')[0]
next_second = variables_permutations[j][k].split(',')[1]
if second == next_first:
second = next_second
indices_chain.append([False, indices_permutations[j][k]])
variables_chain.append(next_first + ',' + next_second)
elif second == next_second:
second = next_first
indices_chain.append([True, indices_permutations[j][k]])
variables_chain.append(next_second + ',' + next_first)
else:
untransposed_check = 0
break
if untransposed_check != 1:
indices_chain[0] = [True, indices_permutations[j][0]]
variables_chain[0] = second + ',' + first
temp = first
first = second
second = temp
for k in range(1, len(variables_permutations[j])):
next_first = variables_permutations[j][k].split(',')[0]
next_second = variables_permutations[j][k].split(',')[1]
if second == next_first:
second = next_second
indices_chain.append([False, indices_permutations[j][k]])
variables_chain.append(next_first + ',' + next_second)
elif second == next_second:
second = next_first
indices_chain.append([True, indices_permutations[j][k]])
variables_chain.append(next_second + ',' + next_first)
else:
transposed_check = 0
break
if untransposed_check == 1 or transposed_check == 1 or len(variables_permutations[j]) == 1:
sort_indice = indices_chain
sorted_variables = variables_chain
break
stack_indice = []
for j in range(1, len(sorted_variables)):
second = sorted_variables[j].split(',')[1]
for k in range(j - 1, -1, -1):
previous_first = sorted_variables[k].split(',')[0]
if previous_first == second:
stack_indice.append([k, j])
base_indices.append(base_indice)
mask_indices.append(mask_indice)
sort_indices.append(sort_indice)
stack_indices.append(stack_indice)
cursor_bn.execute("SELECT * FROM `" + childs[i][0] + "_CP`")
value = cursor_bn.fetchall()
pruned_value = []
for j in value:
size = len(j)
if multiples[i]:
if 2 * j[size - 4] * (log(j[size - 3]) - log(j[size - 1])) - log(j[size - 4]) > 0:
pruned_value.append(j)
else:
if 2 * int(j[size - 3]) * (log(j[size - 5]) - log(j[size - 1])) - log(int(j[size - 3])) > 0:
pruned_value.append(j)
values.append(pruned_value)
ground_truth = []
# print(len(rules))
for i in range(len(rules)):
print(i)
for j in values[i]:
unmasked_matrices = []
for k in range(len(rules[i])):
if states[i][k] == 0:
matrix = torch.zeros((len(entities[nodes[i][k]].index), 1), device='cuda')
for l in range(len(entities[nodes[i][k]][functors[i][k]])):
value = entities[nodes[i][k]][functors[i][k]][l]
if isinstance(j[k + multiples[i]], str):
value = str(value) if isinstance(value, (int, float)) else value
if value == j[k + multiples[i]]:
index = indices[keys[nodes[i][k]]][entities[nodes[i][k]][keys[nodes[i][k]]][l]]
matrix[index][0] = 1
unmasked_matrices.append(matrix)
elif states[i][k] == 1:
for l in masks[i][k]:
matrix = torch.zeros_like(matrices[l[0]], device='cuda')
for m in range(len(entities[nodes[i][k]][functors[i][k]])):
if entities[nodes[i][k]][functors[i][k]][m] == j[k + multiples[i]]:
index = indices[keys[nodes[i][k]]][entities[nodes[i][k]][keys[nodes[i][k]]][m]]
if variables[i][k] == l[1]:
matrix[index, :] = 1
elif variables[i][k] == l[2]:
matrix[:, index] = 1
unmasked_matrices.append(matrix)
elif states[i][k] == 2:
matrix = 1 - matrices[functors[i][k]] if j[k + multiples[i]] == 'F' else matrices[functors[i][k]]
unmasked_matrices.append(matrix)
elif states[i][k] == 3:
if j[k + multiples[i]] == 'N/A':
matrix = 1 - matrices[attributes[functors[i][k]]]
unmasked_matrices.append(matrix)
else:
matrix = torch.zeros_like(matrices[attributes[functors[i][k]]], device='cuda')
for l in range(len(relations[attributes[functors[i][k]]][functors[i][k]])):
if relations[attributes[functors[i][k]]][functors[i][k]][l] == j[k + multiples[i]]:
index1 = indices[keys[attributes[functors[i][k]]][0]][relations[attributes[functors[i][k]]][keys[attributes[functors[i][k]]][0]][l]]
index2 = indices[keys[attributes[functors[i][k]]][1]][relations[attributes[functors[i][k]]][keys[attributes[functors[i][k]]][1]][l]]
matrix[index1, index2] = 1
unmasked_matrices.append(matrix)
masked_matrices = []
for k in base_indices[i]:
masked_matrices.append(unmasked_matrices[k])
for k in mask_indices[i]:
masked_matrices[k[0]] = torch.mul(masked_matrices[k[0]], unmasked_matrices[k[1]])
sorted_matrices = []
for k in sort_indices[i]:
if k[0]:
sorted_matrices.append(masked_matrices[k[1]].T)
else:
sorted_matrices.append(masked_matrices[k[1]])
stacked_matrices = sorted_matrices.copy()
pop_counter = 0
for k in stack_indices[i]:
for l in range(k[1] - k[0] - pop_counter):
stacked_matrices[k[0]] = torch.mm(stacked_matrices[k[0]], stacked_matrices[k[0] + 1])
stacked_matrices.pop(k[0] + 1)
pop_counter += 1
stacked_matrices[k[0]] = torch.mul(stacked_matrices[k[0]], torch.eye(len(stacked_matrices[k[0]]), device='cuda'))
result = stacked_matrices[0]
for k in range(1, len(stacked_matrices)):
result = torch.mm(result, stacked_matrices[k])
ground_truth.append(torch.sum(result))
del unmasked_matrices, masked_matrices, sorted_matrices, stacked_matrices, matrix
print("---------------------------------------------------------------------------------------------------------------")
# break
ground_truth = [tensor.item() for tensor in ground_truth]
import numpy as np
std_dev = np.std(ground_truth)
for i in range(len(ground_truth)):
ground_truth[i] = ground_truth[i] / std_dev
from typing import Optional, Tuple, List
import torch
from torch import Tensor
from torch.nn import Module
from torch_geometric.nn.inits import reset
from torch_geometric.utils import negative_sampling
from sklearn.metrics import roc_auc_score, average_precision_score
import torch.nn.init as init
import random
random_seed = 0
random.seed(random_seed)
torch.manual_seed(random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(random_seed)
EPS = 1e-15
MAX_LOGSTD = 10
import torch.nn as nn
import torch.nn.functional as F
class node_mlp(torch.nn.Module):
def __init__(self, input, layers= [16, 16], normalize = True, dropout_rate = 0.1):
super(node_mlp, self).__init__()
self.layers = torch.nn.ModuleList([torch.nn.Linear(input, layers[0])])
for i in range(len(layers)-1):
self.layers.append(torch.nn.Linear(layers[i],layers[i+1]))
self.norm_layers = None
if normalize:
self.norm_layers = torch.nn.ModuleList([torch.nn.BatchNorm1d(c) for c in [input]+layers])
self.dropout = torch.nn.Dropout(dropout_rate)
# self.reset_parameters()
def forward(self, in_tensor, activation = torch.tanh, applyActOnTheLastLyr=True):
h = in_tensor
for i in range(len(self.layers)):
if self.norm_layers!=None:
if len(h.shape)==2:
h = self.norm_layers[i](h)
else:
shape = h.shape
h= h.reshape(-1, h.shape[-1])
h = self.norm_layers[i](h)
h=h.reshape(shape)
h = self.dropout(h)
h = self.layers[i](h)
if i != (len(self.layers)-1) or applyActOnTheLastLyr:
h = activation(h)
return h
class MultiLatetnt_SBM_decoder(torch.nn.Module):
def __init__(self, number_of_rel, Lambda_dim, in_dim, normalize, DropOut_rate, node_trns_layers=[64]):
super(MultiLatetnt_SBM_decoder, self).__init__()
self.nodeTransformer = torch.nn.ModuleList(
node_mlp(in_dim, node_trns_layers + [Lambda_dim], normalize, DropOut_rate) for i in range(number_of_rel))
self.lambdas = torch.nn.ParameterList(
torch.nn.Parameter(torch.Tensor(Lambda_dim, Lambda_dim)) for i in range(number_of_rel))
self.numb_of_rel = number_of_rel
self.reset_parameters()
def reset_parameters(self):
for i, weight in enumerate(self.lambdas):
self.lambdas[i] = init.xavier_uniform_(weight)
def forward(self, in_tensor, sigmoid: bool = True):
gen_adj = []
for i in range(self.numb_of_rel):
z = self.nodeTransformer[i](in_tensor)
h = torch.mm(z, (torch.mm(self.lambdas[i], z.t())))
gen_adj.append(h)
return torch.sigmoid(torch.sum(torch.stack(gen_adj), 0)) if sigmoid else torch.sum(torch.stack(gen_adj), 0)
def forward_pairwise(self, z, edge_index, sigmoid: bool = True):
gen_adj = []
for i in range(self.numb_of_rel):
z_transformed = self.nodeTransformer[i](z)
h = torch.mm(z_transformed, torch.mm(self.lambdas[i], z_transformed.t()))
gen_adj.append(h)
adj_matrix = torch.sum(torch.stack(gen_adj), 0)
return torch.sigmoid(adj_matrix[edge_index[0], edge_index[1]]) if sigmoid else 0
class MLPDecoder(torch.nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels=64):
super(MLPDecoder, self).__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(in_channels, hidden_channels),
torch.nn.ReLU(),
torch.nn.Linear(hidden_channels, out_channels)
)
def forward(self, z):
return self.layers(z)
class GAE(torch.nn.Module):
def __init__(self, encoder: Module, decoder: Optional[Module] = None):
super().__init__()
self.encoder = encoder
self.decoder = MultiLatetnt_SBM_decoder(...) if decoder is None else decoder
GAE.reset_parameters(self)
def reset_parameters(self):
reset(self.encoder)
reset(self.decoder)
def forward(self, *args, **kwargs) -> Tensor:
return self.encoder(*args, **kwargs)
def encode(self, *args, **kwargs) -> Tensor:
return self.encoder(*args, **kwargs)
def decode(self, *args, **kwargs) -> Tensor:
return self.decoder.forward(*args, **kwargs)
def recon_loss(self, z: Tensor, pos_edge_index: Tensor,
neg_edge_index: Optional[Tensor] = None) -> Tensor:
pos_loss = -torch.log(
self.decoder.forward_pairwise(z, pos_edge_index, sigmoid=True) + EPS).mean()
if neg_edge_index is None:
neg_edge_index = negative_sampling(pos_edge_index, z.size(0), num_neg_samples = 2000)
neg_loss = -torch.log(1 -
self.decoder.forward_pairwise(z, neg_edge_index, sigmoid=True) +
EPS).mean()
return pos_loss + neg_loss
def test(self, z: Tensor, pos_edge_index: Tensor,
neg_edge_index: Tensor) -> Tuple[Tensor, Tensor]:
pos_y = z.new_ones(pos_edge_index.size(1))
neg_y = z.new_zeros(neg_edge_index.size(1))
y = torch.cat([pos_y, neg_y], dim=0)
pos_pred = self.decoder.forward_pairwise(z, pos_edge_index, sigmoid=True)
neg_pred = self.decoder.forward_pairwise(z, neg_edge_index, sigmoid=True)
pred = torch.cat([pos_pred, neg_pred], dim=0)
y, pred = y.detach().cpu().numpy(), pred.detach().cpu().numpy()
return roc_auc_score(y, pred), average_precision_score(y, pred)
class VGAE1(GAE):
def __init__(self, encoder: Module, decoder: Optional[Module] = None,
node_feat_decoder: Optional[Module] = None,
number_of_rel: int = 1, Lambda_dim: int = 32,
in_dim: int = 48, normalize: bool = True,
DropOut_rate: float = 0.1, node_trns_layers: List[int] = [64, 64]):
sbm_decoder = MultiLatetnt_SBM_decoder(number_of_rel, Lambda_dim, in_dim, normalize, DropOut_rate, node_trns_layers)
super().__init__(encoder, decoder=sbm_decoder) # pass your decoder to the GAE class
self.node_feat_decoder = MLPDecoder(out_channels, num_features) if node_feat_decoder is None else node_feat_decoder
def node_feat_recon_loss(self, x: Tensor, z: Tensor) -> Tensor:
x_recon = self.node_feat_decoder(z)
return torch.nn.functional.mse_loss(x_recon, x)
def reparametrize(self, mu: Tensor, logstd: Tensor) -> Tensor:
if self.training:
return mu + torch.randn_like(logstd) * torch.exp(logstd)
else:
return mu
def encode(self, *args, **kwargs) -> Tuple[Tensor, Tensor]:
self.__mu__, self.__logstd__ = self.encoder(*args, **kwargs)
self.__logstd__ = self.__logstd__.clamp(max=MAX_LOGSTD)
z = self.reparametrize(self.__mu__, self.__logstd__)
x_recon = self.node_feat_decoder(z)
return z, x_recon
def kl_loss(self, mu: Optional[Tensor] = None,
logstd: Optional[Tensor] = None) -> Tensor:
mu = self.__mu__ if mu is None else mu
logstd = self.__logstd__ if logstd is None else logstd.clamp(
max=MAX_LOGSTD)
return -0.5 * torch.mean(
torch.sum(1 + 2 * logstd - mu**2 - logstd.exp()**2, dim=1))
import os
import torch
import torch
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv
from torch_geometric.utils import train_test_split_edges
from torch_geometric.nn import VGAE
import copy
import numpy as np
# os.environ['TORCH'] = torch.__version__
# print(torch.__version__)
# !pip install -q torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}.html
# !pip install -q torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.html
# !pip install -q git+https://github.com/pyg-team/pytorch_geometric.git
# dataset = Planetoid("\..", "CiteSeer")
# dataa = dataset[0]
dataa = torch.load("db/imdb.pt")
dataa.train_mask = dataa.val_mask = dataa.test_mask = dataa.y = None
# def binarize_node_features(data):
# data.x[data.x > 0] = 1
# return data
from sklearn.decomposition import PCA
def reduce_node_features(data, n_components=10):
pca = PCA(n_components=n_components)
reduced_features = pca.fit_transform(data.x.numpy())
data.x = torch.tensor(reduced_features, dtype=torch.float)
return data
def binarize_features(features):
mean_val = features.mean()
binarized_features = (features >= mean_val).float()
return binarized_features
data_bi = dataa
data_re = reduce_node_features(data_bi)
data_re.x = binarize_features(data_re.x)
data1 = copy.deepcopy(data_re)
data = train_test_split_edges(data_re)
class VariationalGCNEncoder(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super(VariationalGCNEncoder, self).__init__()
self.conv1 = GCNConv(in_channels, 2 * out_channels, cached=True)
self.conv_mu = GCNConv(2 * out_channels, out_channels, cached=True)
self.conv_logstd = GCNConv(2 * out_channels, out_channels, cached=True)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
return self.conv_mu(x, edge_index), self.conv_logstd(x, edge_index)
out_channels = 48
num_features = 10
epochs = 100
Lambda_dim = 32
node_trns_layers = [out_channels, 64, Lambda_dim]
model = VGAE1(VariationalGCNEncoder(num_features, out_channels),
Lambda_dim=Lambda_dim,
node_trns_layers=node_trns_layers)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("device is: ", device)
model = model.to(device)
x = data.x.to(device)
train_pos_edge_index = data.train_pos_edge_index.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
def train_motif():
model.train()
optimizer.zero_grad()
z, x_recon = model.encode(x, train_pos_edge_index)
A_pred = model.decoder(z)
# A_pred = torch.sigmoid(torch.mm(z, z.t()))
for i in range(1, 11):
feature_name = f'feature_{i}'
tensor_to_assign = ((x_recon[:, i-1]) > 0.5).int().cpu().numpy()
entities['nodes_table'][feature_name] = tensor_to_assign
matrices['edges_table'] = A_pred
predicted = []
for i in range(len(rules)):
print(i)
for j in values[i]:
unmasked_matrices = []
for k in range(len(rules[i])):
if states[i][k] == 0:
matrix = torch.zeros((len(entities[nodes[i][k]].index), 1), device='cuda', dtype=torch.float16)
for l in range(len(entities[nodes[i][k]][functors[i][k]])):
value = entities[nodes[i][k]][functors[i][k]][l]
if isinstance(j[k + multiples[i]], str):
value = str(value) if isinstance(value, (int, float)) else value
if value == j[k + multiples[i]]:
index = indices[keys[nodes[i][k]]][entities[nodes[i][k]][keys[nodes[i][k]]][l]]
matrix[index][0] = 1
unmasked_matrices.append(matrix)
elif states[i][k] == 1:
for l in masks[i][k]:
matrix = torch.zeros_like(matrices[l[0]], device='cuda', dtype=torch.float16)
for m in range(len(entities[nodes[i][k]][functors[i][k]])):
if entities[nodes[i][k]][functors[i][k]][m] == j[k + multiples[i]]:
index = indices[keys[nodes[i][k]]][entities[nodes[i][k]][keys[nodes[i][k]]][m]]
if variables[i][k] == l[1]:
matrix[index, :] = 1
elif variables[i][k] == l[2]:
matrix[:, index] = 1
unmasked_matrices.append(matrix)
elif states[i][k] == 2:
matrix = 1 - matrices[functors[i][k]] if j[k + multiples[i]] == 'F' else matrices[functors[i][k]]
unmasked_matrices.append(matrix)
elif states[i][k] == 3:
if j[k + multiples[i]] == 'N/A':
matrix = 1 - matrices[attributes[functors[i][k]]]
unmasked_matrices.append(matrix)
else:
matrix = torch.zeros_like(matrices[attributes[functors[i][k]]], device='cuda', dtype=torch.float16)
for l in range(len(relations[attributes[functors[i][k]]][functors[i][k]])):
if relations[attributes[functors[i][k]]][functors[i][k]][l] == j[k + multiples[i]]:
index1 = indices[keys[attributes[functors[i][k]]][0]][relations[attributes[functors[i][k]]][keys[attributes[functors[i][k]]][0]][l]]
index2 = indices[keys[attributes[functors[i][k]]][1]][relations[attributes[functors[i][k]]][keys[attributes[functors[i][k]]][1]][l]]
matrix[index1, index2] = 1
unmasked_matrices.append(matrix)
masked_matrices = []
for k in base_indices[i]:
masked_matrices.append(unmasked_matrices[k])
for k in mask_indices[i]:
masked_matrices[k[0]] = torch.mul(masked_matrices[k[0]], unmasked_matrices[k[1]])
sorted_matrices = []
for k in sort_indices[i]:
if k[0]:
sorted_matrices.append(masked_matrices[k[1]].T)
else:
sorted_matrices.append(masked_matrices[k[1]])
stacked_matrices = sorted_matrices.copy()
pop_counter = 0
for k in stack_indices[i]:
for l in range(k[1] - k[0] - pop_counter):
stacked_matrices[k[0]] = torch.mm(stacked_matrices[k[0]], stacked_matrices[k[0] + 1])
stacked_matrices.pop(k[0] + 1)
pop_counter += 1
stacked_matrices[k[0]] = torch.mul(stacked_matrices[k[0]], torch.eye(len(stacked_matrices[k[0]]), device='cuda'))
result = stacked_matrices[0]
for k in range(1, len(stacked_matrices)):
result = torch.mm(result, stacked_matrices[k])
# print(torch.sum(result))
predicted.append(torch.sum(result).cpu().item())
del unmasked_matrices, masked_matrices, sorted_matrices, stacked_matrices, matrix
# print("---------------------------------------------------------------------------------------------------------------")
for i in range(len(ground_truth)):
predicted[i] = predicted[i] / std_dev
motif = ((a-b)**2 for a, b in zip(ground_truth, predicted))
motif_loss = np.sum(np.fromiter(motif, dtype=float))
del predicted
recon_loss = model.recon_loss(z, train_pos_edge_index)
node_feat_loss = model.node_feat_recon_loss(x, z)
alfa = 0.7
loss = (1-alfa)*(recon_loss + (1 / data.num_nodes) * model.kl_loss() + node_feat_loss) + (alfa)*((1/len(ground_truth))*motif_loss)
loss.backward()
optimizer.step()
return float(loss)
def test(pos_edge_index, neg_edge_index):
model.eval()
with torch.no_grad():
z, _ = model.encode(x, data.test_pos_edge_index)
return model.test(z, pos_edge_index, neg_edge_index)
import matplotlib.pyplot as plt
auc_scores = []
ap_scores = []
for epoch in range(1, epochs + 1):
loss = train_motif()
auc, ap = test(data.test_pos_edge_index, data.test_neg_edge_index)
auc_scores.append(auc)
ap_scores.append(ap)
print('Epoch: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(epoch, auc, ap))
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(range(1, epochs + 1), auc_scores, marker='o', color='b')
plt.title('AUC Score Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('AUC Score')
plt.subplot(1, 2, 2)
plt.plot(range(1, epochs + 1), ap_scores, marker='o', color='r')
plt.title('AP Score Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('AP Score')
plt.tight_layout()
plt.show()