-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathanalysis.py
33 lines (33 loc) · 1015 Bytes
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import arff
import xlwt
import numpy as np
from knn import KNNclassifier
files = []
data_path = "MDP\\D''\\"
for f in os.listdir(data_path):
files.append(f)
workbook = xlwt.Workbook()
style = xlwt.easyxf('font: bold 1; align: horiz center')
sheet1 = workbook.add_sheet('Sheet 1')
sheet1.write(0, 0, 'Serial No.', style)
sheet1.write(0, 1, 'Dataset', style)
sheet1.write(0, 2, 'Algo 1\n(SVM)\nAccuracy', style)
sheet1.write(0, 3, 'Algo 2\n(KNN)', style)
sheet1.merge(0, 1, 3, 3)
sheet1.merge(0, 1, 4, 4)
sheet1.merge(0, 0, 3, 4)
sheet1.merge(0, 2, 0, 0)
sheet1.merge(0, 2, 1, 1)
sheet1.merge(0, 2, 2, 2)
sheet1.write(2, 3, 'Accuracy', style)
sheet1.write(2, 4, 'Smallest k', style)
sheet1.write(0, 5, 'Algo 3\n(RF)\nAccuracy', style)
sheet1.merge(0, 2, 5, 5)
for i in range(len(files)):
sheet1.write(i+3, 0, str(i+1))
sheet1.write(i+3, 1, files[i][:-5])
knn = KNNclassifier(files[i])
sheet1.write(i+3, 3, str(knn[0]))
sheet1.write(i+3, 4, str(knn[1]))
workbook.save("Analysis.xls")