-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinking.py
executable file
·214 lines (194 loc) · 7.98 KB
/
linking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import codecs
from collections import Counter
import json
import logging
import numpy as np
import random
import re
import sys
import os
from keras.models import Model
from keras.layers import Embedding, Flatten, UpSampling1D, Reshape
from keras.layers import Dense, Input, Dropout, MaxPooling1D, Conv1D, GlobalMaxPool1D
from keras.layers import LSTM, Lambda, Bidirectional, concatenate, BatchNormalization
from keras.layers import TimeDistributed
from keras.losses import mean_squared_error
from keras.optimizers import Adam
import keras.backend as K
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, CSVLogger, TensorBoard
import tensorflow as tf
from models import make_decoder
from models import make_encoder
from models import make_label_input
from preprocessing import char_indices
from preprocessing import labels_to_matrix
from preprocessing import load_labels
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", nargs='?', default="char-cnn",
choices=["char-cnn", "char-lstm"])
parser.add_argument("--loss_type", nargs='?', default="i1i1",
choices=["i1i1", "i1i1-i1i2s", "i1i1-i1i2s-i1j1s"])
parser.add_argument("--ntrain", nargs='?', type=int, default=-1)
parser.add_argument("--maxlen", nargs='?', type=int, default=16,
help="Maximum length of labels. Longer labels are cropped.")
parser.add_argument("--char_emb_size", nargs='?', type=int, default=128)
parser.add_argument("--batch_size", nargs='?', type=int, default=500)
parser.add_argument("--epochs", nargs='?', type=int, default=200)
parser.add_argument("--patience", nargs='?', type=int, default=5)
parser.add_argument("--exp_suffix", nargs='?', default="")
args = parser.parse_args()
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
model_basename = '{0}_linkent_{1}{2}'.format(
args.model_type, args.loss_type, args.exp_suffix)
model_name = model_basename
labels = load_labels('data/dbpedia_ents.text.jsonl', ntrain=args.ntrain)
labels_len = [len(label) for label in labels]
logging.info('Label length stats. min, avg, median, max: {0}, {1}, {2}, {3}'.format(
np.min(labels_len), np.mean(labels_len), np.median(labels_len), np.max(labels_len)))
logging.info('Label samples: {0}'.format(random.sample(labels, 10)))
logging.info('Using {0} characters: {1}'.format(len(char_indices), ''.join(list(char_indices.keys()))))
char_counter = Counter(c for label in labels for c in label if c not in char_indices)
logging.info('Unique discarded characters: {0}.'.format(len(char_counter)))
logging.info('Most common discarded chars: {0}'.format(
char_counter.most_common(10)))
X = labels_to_matrix(labels, args.maxlen)
print('Sample X:\n{}'.format(X[:2, :]))
# shuffle
ids = np.arange(len(X))
np.random.shuffle(ids)
X = X[ids]
#split = int(args.ntrain * .8) # int(-1 * 0.8) = 0
split = int(len(labels) * .8)
X_train = X[:split]
X_test = X[split:]
logging.info('Using {0} data for train, {1} data for validation.'.format(len(X_train), len(X_test)))
num_filters = (args.char_emb_size, args.char_emb_size * 2, args.char_emb_size * 4)
filter_lengths = (3, 3, 3)
subsamples = (1, 1, 1)
pool_lengths = (2, 2, 2)
inputs, outputs, char_emb_x = make_encoder(
args.maxlen,
args.char_emb_size,
num_filters=num_filters,
filter_lengths=filter_lengths,
subsamples=subsamples,
pool_lengths=pool_lengths)
encoder = Model(inputs=inputs, outputs=outputs, name='encoder_model')
encoder.summary()
char_emb_model = Model(inputs=inputs, outputs=[char_emb_x], name='char_emb_model')
char_emb_model.summary()
_, outputs = make_decoder(
outputs[0],
num_filters=list(reversed(num_filters)),
filter_lengths=list(reversed(filter_lengths)),
subsamples=list(reversed(subsamples)),
up_lengths=list(reversed(pool_lengths)))
autoencoder = Model(inputs=inputs, outputs=outputs, name='autoencoder_model')
autoencoder.summary()
loss_out = None
siamese = None
inputs = []
if args.loss_type == 'i1i1-i1i2':
loss_out = Lambda(
loss_i1i1_i1i2_func,
output_shape=(1,),
name='loss_func')([
autoencoder(img1_input),
img1_input,
encoder(img1_input),
encoder(img2_input)])
model = Model(
inputs=[img1_input, img2_input],
outputs=[loss_out],
name=model_name)
elif args.loss_type == 'i1i1-i1i2s-i1j1s':
from models import make_siamese_model
from models import loss_i1i1_i1i2s_i1j1s_func
input1 = make_label_input(args.maxlen)
input2 = make_label_input(args.maxlen)
input3 = make_label_input(args.maxlen)
inputs = [input1, input2, input3]
siamese = make_siamese_model(input1, input2, encoder, drop=0.3)
loss_out = Lambda(
loss_i1i1_i1i2s_i1j1s_func,
output_shape=(1,),
name='loss_func')([
autoencoder(input1),
char_emb_model(input1),
siamese([input1, input2]),
siamese([input1, input3])])
ids = np.arange(len(X_train))
np.random.shuffle(ids)
X_train = [X_train, X_train, X_train[ids]]
ids = np.arange(len(X_test))
np.random.shuffle(ids)
X_test = [X_test, X_test, X_test[ids]]
elif args.loss_type == 'i1i1-i1i2s':
from models import make_siamese_model
from models import loss_i1i1_i1i2s_func
input1 = make_label_input(args.maxlen)
input2 = make_label_input(args.maxlen)
inputs = [input1, input2]
siamese = make_siamese_model(input1, input2, encoder, drop=0.0)
loss_out = Lambda(
loss_i1i1_i1i2s_func,
output_shape=(1,),
name='loss_func')([
autoencoder(input1),
char_emb_model(input1),
siamese([input1, input2])])
X_train = [X_train, X_train]
X_test = [X_test, X_test]
elif args.loss_type == 'i1i1':
from models import loss_i1i1_func as loss_func
input1 = make_label_input(args.maxlen)
inputs = [input1]
loss_out = Lambda(
loss_func,
output_shape=(1,),
name='loss_func')([
autoencoder(input1),
char_emb_model(input1)])
elif args.loss_type == 'i1i2':
loss_out = Lambda(
loss_i1i2_func,
output_shape=(1,),
name='loss_func')([
autoencoder(img1_input),
img2_input])
model = Model(
inputs=[img1_input, img2_input],
outputs=[loss_out],
name=model_name)
model = Model(
inputs=inputs,
output=[loss_out],
name=model_name)
optimizer = 'rmsprop'
model.compile(
optimizer=optimizer,
loss={'loss_func' : lambda y_true, y_pred: y_pred})
# ReduceLROnPlateau(patience=args.patience / 2, verbose=1),
callbacks = [
EarlyStopping(monitor='val_loss', patience=args.patience, verbose=0, mode='auto'),
CSVLogger(filename=model_name + '.log.csv'),
TensorBoard(log_dir='./logs'),
ModelCheckpoint(model_name + '.check',
save_best_only=True,
save_weights_only=True)]
model.fit(
X_train,
X_train[0],
validation_data=(X_test, X_test[0]),
batch_size=args.batch_size,
epochs=args.epochs,
shuffle=True,
callbacks=callbacks)
encoder.save(model_name + '.h5')
print('Encoder model wrote to {0}.h5'.format(model_name))
if siamese is not None:
siamese_model_name = model_name + '_siamese'
siamese.save(siamese_model_name + '.h5')
print('Siamese model wrote to {0}.h5'.format(siamese_model_name))