-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
193 lines (174 loc) · 6.04 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
from keras import backend as K
from keras.layers import Embedding, Flatten, UpSampling1D, Reshape
from keras.layers import Dense, Input, Dropout, MaxPooling1D, Conv1D
from keras.layers import Lambda, concatenate
from keras.layers import TimeDistributed
from keras.layers import Add
from keras.layers import Subtract
from keras.layers import Dot
from keras.losses import mean_squared_error
from keras.models import Model
from keras.regularizers import l2
from preprocessing import char_indices
L2Strength = 1e-6
def make_label_input(maxlen):
label_input = Input(shape=(maxlen,), dtype='int32')
return label_input
def make_siamese_model2(input1, input2, encoder, l2_strength=1e-6, dense_dim=128, drop=0.3):
"""
Siamese model that computes cosine *similarity* (not distance).
"""
in1 = encoder(input1)
in2 = encoder(input2)
in1 = Dense(
dense_dim,
kernel_regularizer=l2(l2_strength),
bias_regularizer=l2(l2_strength),
activation='relu',
name='siam_dense1_src')(in1)
in1 = Dropout(drop, name='siam_drop1_src')(in1)
in2 = Dense(
dense_dim,
kernel_regularizer=l2(l2_strength),
bias_regularizer=l2(l2_strength),
activation='relu',
name='siam_dense1_trg')(in2)
in2 = Dropout(drop, name='siam_drop2_src')(in2)
return in1, in2
def make_siamese_model(input1, input2, encoder, l2_strength=1e-6, dense_dim=128, drop=0.3):
"""
Siamese model that computes cosine *similarity* (not distance).
"""
in1 = encoder(input1)
in2 = encoder(input2)
in1 = Dense(
dense_dim,
kernel_regularizer=l2(l2_strength),
bias_regularizer=l2(l2_strength),
activation='relu',
name='siam_dense1_src')(in1)
in1 = Dropout(drop, name='siam_drop1_src')(in1)
in2 = Dense(
dense_dim,
kernel_regularizer=l2(l2_strength),
bias_regularizer=l2(l2_strength),
activation='relu',
name='siam_dense1_trg')(in2)
in2 = Dropout(drop, name='siam_drop2_src')(in2)
simil = Dot(
axes=(1,1),
normalize=True,
name='siam_cos_simil')([in1, in2])
siamese = Model(
inputs=[input1, input2],
outputs=[simil],
name='siamese_simil')
return siamese
def loss_i1i1_func(args):
decoded_label, embedded_label = args
decoded_label = Flatten(name='loss_dec_flatten')(decoded_label)
embedded_label = Flatten(name='loss_emb_flatten')(embedded_label)
loss = mean_squared_error(decoded_label, embedded_label)
print('Loss shape: {0}'.format(loss.shape))
return loss
def loss_i1i1_i1i2s_func(args):
"""
In this loss function, we use the cosine similarity (in negative form)
as part of the loss.
"""
auto_in1, in1, cosine_simil = args
auto_in1 = Flatten()(auto_in1)
in1 = Flatten()(in1)
auto_loss = K.mean(K.square(auto_in1 - in1), axis=-1)
cosine_simil = K.mean(cosine_simil, axis=-1)
loss = Subtract()([Reshape((1,))(auto_loss), Reshape((1,))(cosine_simil)])
print('Loss shape: {0}'.format(loss.shape))
return loss
def loss_i1i1_i1i2s_i1j1s_func(args):
"""
In this loss function, we use the cosine similarity (in negative form)
as part of the loss and the cosine similarity of negative samples
(in positive form) also as part of the loss. This is inspired by the
Noise Contrastive Estimation.
"""
auto_in1, in1, cosine_simil_pos, cosine_simil_neg = args
auto_in1 = Flatten()(auto_in1)
in1 = Flatten()(in1)
auto_loss = K.mean(K.square(auto_in1 - in1), axis=-1)
cosine_simil_pos = K.mean(cosine_simil_pos, axis=-1)
cosine_simil_neg = K.mean(cosine_simil_neg, axis=-1)
loss = Subtract()([Reshape((1,))(auto_loss), Reshape((1,))(cosine_simil_pos)])
loss = Add()([loss, Reshape((1,))(cosine_simil_neg)])
print('Loss shape: {0}'.format(loss.shape))
return loss
def make_encoder(
maxlen=16,
char_emb_size=128,
num_filters=(128, 128 * 2, 128 * 4),
filter_lengths=(3, 3, 3),
subsamples=(1, 1, 1),
pool_lengths=(2, 2, 2)):
"""
Make the output of an encoder (but does not build the model).
"""
entity = make_label_input(maxlen)
# TODO: make explicit 0 embedding for character index 0.
embs = np.random.uniform(-0.05, 0.05, (len(char_indices) + 1, char_emb_size))
embs[0, :] = 0
char_emb = Embedding(
input_dim=len(char_indices) + 1,
output_dim=char_emb_size,
weights=[embs],
trainable=False,
name='char_emb')
char_emb_x = char_emb(entity)
x = char_emb_x
for i in range(len(num_filters)):
x = Conv1D(
filters=num_filters[i],
kernel_size=filter_lengths[i],
padding='same',
activation='relu',
strides=subsamples[i],
name='enc_conv1d_' + str(i))(x)
x = MaxPooling1D(
pool_size=pool_lengths[i],
name='enc_maxpool1d_' + str(i))(x)
x = Flatten(name='enc_flatten')(x)
x = Dense(
128,
kernel_regularizer=l2(L2Strength),
bias_regularizer=l2(L2Strength),
activation='relu',
name='enc_dense_128')(x)
inputs = [entity]
outputs = [x]
return inputs, outputs, char_emb_x
def make_decoder(
encoded_entity,
num_filters=(64, 100),
filter_lengths=(3, 3),
subsamples=(2, 1),
up_lengths=(2, 2)):
x = Dense(
2 * num_filters[0],
kernel_regularizer=l2(L2Strength),
bias_regularizer=l2(L2Strength),
activation='tanh',
name='dec_dense')(encoded_entity)
x = Reshape((2, num_filters[0]), name='dec_reshape')(x)
for i in range(len(num_filters)):
x = Conv1D(
filters=num_filters[i],
kernel_size=filter_lengths[i],
padding='same',
activation='relu',
strides=subsamples[i],
name='dec_conv1d_' + str(i))(x)
x = UpSampling1D(
size=up_lengths[i],
name='dec_up1d_' + str(i))(x)
inputs = [encoded_entity]
outputs = [x]
return inputs, outputs