-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaggregate_results.py
173 lines (143 loc) · 6.52 KB
/
aggregate_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def aggregate(input_rst, output_rst, scale):
"""
Downsample (upscale) a raster by a given factor and replace no_data value with 0.
Args:
input_rst: path to the input raster in a format supported by georaster
output_rst: path to the scaled output raster in a format supported by georaster
scale: The scale (integer) by which the raster in upsampeld.
Returns:
Save the output raster to disk.
"""
import georasters as gr
input_gr = gr.from_file(input_rst)
# No data values are replaced with 0 to prevent summing them in each block.
input_gr.raster.data[input_gr.raster.data == input_gr.nodata_value] = 0
input_gr.nodata_value = 0
output_gr = input_gr.aggregate(block_size=(scale, scale))
output_gr.to_tiff(output_rst.replace(".tif", ""))
def replace_nodata(input_rst, output_rst, value):
"""
Replace the no_data value of a raster in both the data and the metadata of a raster.
Args:
input_rst: path to the input raster in a format supported by rasterio
output_rst: path to the output raster in a format supported by rasterio
value: The new no_data value.
Returns:
Save the output raster to disk.
"""
import rasterio
with rasterio.open(input_rst, 'r') as src:
data = src.read()
data[data == src.nodata] = value
profile = src.profile
with rasterio.open(output_rst, 'w', **profile) as dst:
dst.nodata = value
dst.write(data)
def reproject(input_rst, output_rst, reference_rst):
"""
Reproject a raster to the coordinates system of another raster and re-samples the data using Nearest Neighbor interpolation.
Args:
input_rst: path to the input raster in a format supported by gdal
output_rst: path to the output raster in a format supported by gdal
reference_rst: path to the reference raster in a format supported by gdal
Returns:
Save the output raster to disk.
"""
from osgeo import gdal, gdalconst
src = gdal.Open(input_rst, gdalconst.GA_ReadOnly)
src_proj = src.GetProjection()
match_ds = gdal.Open(reference_rst, gdalconst.GA_ReadOnly)
match_proj = match_ds.GetProjection()
match_geotrans = match_ds.GetGeoTransform()
wide = match_ds.RasterXSize
high = match_ds.RasterYSize
dst = gdal.GetDriverByName('GTiff').Create(output_rst, wide, high, 1, gdalconst.GDT_Float32)
dst.SetGeoTransform(match_geotrans)
dst.SetProjection(match_proj)
band = dst.GetRasterBand(1)
band.SetNoDataValue(0.0)
gdal.ReprojectImage(src, dst, src_proj, match_proj, gdalconst.GRA_NearestNeighbour)
del dst
def multiply(input_rst1, input_rst2, output_rst):
"""
Multiply two rasters cell by cell.
Args:
input_rst1: path to the input raster in a format supported by gdal
input_rst2: path to the output raster in a format supported by gdal
output_rst: path to the raster to copy the referenced system (projection and transformation) from
Returns:
Save the output raster to disk.
"""
import rasterio
with rasterio.open(input_rst1) as src1:
with rasterio.open(input_rst2) as src2:
data1 = src1.read()
data2 = src2.read()
data1[data1 == src1.nodata] = 0
data2[data2 == src2.nodata] = 0
final = data1 * data2
profile = src1.profile
with rasterio.open(output_rst, 'w', **profile) as dst:
dst.nodata = 0
dst.write(final)
def weighted_sum_by_polygon(input_shp, input_rst, weight_rst, output_shp):
"""
Take the weighted sum of two rasters (indicator and weights) within each polygon of a shapefile.
input_rst and weight_rst need to be in the same projection system and have the same shape
Args:
input_shp: path to the input shapefile in a format support by geopandas
input_rst: path to the raster containing the value you want to aggregate
weight_rst: path to the raster containing the weights (ex: population data)
output_shp: path to the input shapefile in a format support by geopandas
Returns:
Save a copy of the shapefile to disk with the resulting weighted sum as a new attribute of each polygon.
"""
import geopandas as gpd
import rasterio
import rasterio.mask
import json
import numpy as np
mult_rst = input_rst.replace(".tif", "_multiplied.tif")
multiply(input_rst, weight_rst, mult_rst)
X = []
Y = []
gdf = gpd.read_file(input_shp)
gdf['indicator'] = None
with rasterio.open(mult_rst) as src1:
with rasterio.open(weight_rst) as src2:
index = 0
gdf = gdf.to_crs(crs=src1.crs.data) # Re-project shape-file according to mult_rst
features = json.loads(gdf.to_json())['features']
for feature in features:
geom = feature['geometry']
out_image, out_transform = rasterio.mask.mask(src1, [geom], crop=True)
out_image2, out_transform2 = rasterio.mask.mask(src2, [geom], crop=True)
out_image[out_image == src1.nodata] = 0
out_image2[out_image2 == src2.nodata] = 0
x = out_image.sum() / out_image2.sum()
y = out_image2.sum()
X.append(x)
Y.append(y)
print(gdf.loc[index, 'admin1Name'], x, y)
gdf.loc[index, 'FCS'] = round(x, 2)
gdf.loc[index, 'population'] = int(y)
index += 1
print("Total_Weights : {}".format(np.array(Y).sum()))
gdf.to_file(output_shp)
# Inputs
hrm_raster = 'inputs/88.tif'
pop_raster = 'inputs/SEN_pph_v2b_2015_UNadj.tif'
senegal_shp = "inputs/sen_admbnda_adm1_1m_gov_ocha_04082017.shp"
senegal_adm3_shp = "inputs/sen_admbnda_adm3_1m_gov_ocha_04082017.shp"
# Outputs
hrm_raster_repr = 'intermediary/88_agg.tif'
pop_raster_agg = 'intermediary/SEN_pph_v2b_2015_UNadj_repr.tif'
pop_raster_nodata = 'intermediary/SEN_pph_v2b_2015_UNadj_repr_nodata.tif'
senegal_adm3_shp_FCS = "results/sen_admbnda_adm3_1m_gov_ocha_04082017_FCS.shp"
# Script 1 : Aggregate WorldPop to 1km cell size
aggregate(pop_raster, pop_raster_agg, 10)
reproject(hrm_raster, hrm_raster_repr, pop_raster_agg)
weighted_sum_by_polygon(senegal_adm3_shp, hrm_raster_repr, pop_raster_agg, senegal_adm3_shp_FCS)
# Script 2 : Leave WorldPop at 100m cell size and resample input raster to match WorldPop (slower but more accurate)
reproject(hrm_raster, hrm_raster_repr, pop_raster)
weighted_sum_by_polygon(senegal_adm3_shp, hrm_raster_repr, pop_raster, senegal_adm3_shp_FCS)