-
Notifications
You must be signed in to change notification settings - Fork 0
/
wandb_callbacks.py
289 lines (218 loc) · 9.76 KB
/
wandb_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import subprocess
from pathlib import Path
from typing import List
import matplotlib.pyplot as plt
import seaborn as sn
import torch
import wandb
from pytorch_lightning import Callback, Trainer
from pytorch_lightning.loggers import LoggerCollection, WandbLogger
from pytorch_lightning.utilities import rank_zero_only
from sklearn import metrics
from sklearn.metrics import f1_score, precision_score, recall_score
def get_wandb_logger(trainer: Trainer) -> WandbLogger:
"""Safely get Weights&Biases logger from Trainer."""
if trainer.fast_dev_run:
raise Exception(
"Cannot use wandb callbacks since pytorch lightning disables loggers in `fast_dev_run=true` mode."
)
if isinstance(trainer.logger, WandbLogger):
return trainer.logger
if isinstance(trainer.logger, LoggerCollection):
for logger in trainer.logger:
if isinstance(logger, WandbLogger):
return logger
raise Exception(
"You are using wandb related callback, but WandbLogger was not found for some reason..."
)
class WatchModel(Callback):
"""Make wandb watch model at the beginning of the run."""
def __init__(self, log: str = "gradients", log_freq: int = 100):
self.log = log
self.log_freq = log_freq
@rank_zero_only
def on_train_start(self, trainer, pl_module):
logger = get_wandb_logger(trainer=trainer)
logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq, log_graph=True)
class UploadCodeAsArtifact(Callback):
"""Upload all code files to wandb as an artifact, at the beginning of the run."""
def __init__(self, code_dir: str, use_git: bool = True):
"""
Args:
code_dir: the code directory
use_git: if using git, then upload all files that are not ignored by git.
if not using git, then upload all '*.py' file
"""
self.code_dir = code_dir
self.use_git = use_git
@rank_zero_only
def on_train_start(self, trainer, pl_module):
logger = get_wandb_logger(trainer=trainer)
experiment = logger.experiment
code = wandb.Artifact("project-source", type="code")
if self.use_git:
# get .git folder path
git_dir_path = Path(
subprocess.check_output(["git", "rev-parse", "--git-dir"]).strip().decode("utf8")
).resolve()
for path in Path(self.code_dir).resolve().rglob("*"):
# don't upload files ignored by git
# https://alexwlchan.net/2020/11/a-python-function-to-ignore-a-path-with-git-info-exclude/
command = ["git", "check-ignore", "-q", str(path)]
not_ignored = subprocess.run(command).returncode == 1
# don't upload files from .git folder
not_git = not str(path).startswith(str(git_dir_path))
if path.is_file() and not_git and not_ignored:
code.add_file(str(path), name=str(path.relative_to(self.code_dir)))
else:
for path in Path(self.code_dir).resolve().rglob("*.py"):
code.add_file(str(path), name=str(path.relative_to(self.code_dir)))
experiment.log_artifact(code)
class UploadCheckpointsAsArtifact(Callback):
"""Upload checkpoints to wandb as an artifact, at the end of run."""
def __init__(self, ckpt_dir: str = "checkpoints/", upload_best_only: bool = False):
self.ckpt_dir = ckpt_dir
self.upload_best_only = upload_best_only
@rank_zero_only
def on_keyboard_interrupt(self, trainer, pl_module):
self.on_train_end(trainer, pl_module)
@rank_zero_only
def on_train_end(self, trainer, pl_module):
logger = get_wandb_logger(trainer=trainer)
experiment = logger.experiment
ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints")
if self.upload_best_only:
ckpts.add_file(trainer.checkpoint_callback.best_model_path)
else:
for path in Path(self.ckpt_dir).rglob("*.ckpt"):
ckpts.add_file(str(path))
experiment.log_artifact(ckpts)
class LogConfusionMatrix(Callback):
"""Generate confusion matrix every epoch and send it to wandb.
Expects validation step to return predictions and targets.
"""
def __init__(self):
self.preds = []
self.targets = []
self.ready = True
def on_sanity_check_start(self, trainer, pl_module) -> None:
self.ready = False
def on_sanity_check_end(self, trainer, pl_module):
"""Start executing this callback only after all validation sanity checks end."""
self.ready = True
def on_validation_batch_end(
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx
):
"""Gather data from single batch."""
if self.ready:
self.preds.append(outputs["preds"])
self.targets.append(outputs["targets"])
def on_validation_epoch_end(self, trainer, pl_module):
"""Generate confusion matrix."""
if self.ready:
logger = get_wandb_logger(trainer)
experiment = logger.experiment
preds = torch.cat(self.preds).cpu().numpy()
targets = torch.cat(self.targets).cpu().numpy()
confusion_matrix = metrics.confusion_matrix(y_true=targets, y_pred=preds)
# set figure size
plt.figure(figsize=(14, 8))
# set labels size
sn.set(font_scale=1.4)
# set font size
sn.heatmap(confusion_matrix, annot=True, annot_kws={"size": 8}, fmt="g")
# names should be uniqe or else charts from different experiments in wandb will overlap
experiment.log({f"confusion_matrix/{experiment.name}": wandb.Image(plt)}, commit=False)
# according to wandb docs this should also work but it crashes
# experiment.log(f{"confusion_matrix/{experiment.name}": plt})
# reset plot
plt.clf()
self.preds.clear()
self.targets.clear()
class LogF1PrecRecHeatmap(Callback):
"""Generate f1, precision, recall heatmap every epoch and send it to wandb.
Expects validation step to return predictions and targets.
"""
def __init__(self, class_names: List[str] = None):
self.preds = []
self.targets = []
self.ready = True
def on_sanity_check_start(self, trainer, pl_module):
self.ready = False
def on_sanity_check_end(self, trainer, pl_module):
"""Start executing this callback only after all validation sanity checks end."""
self.ready = True
def on_validation_batch_end(
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx
):
"""Gather data from single batch."""
if self.ready:
self.preds.append(outputs["preds"])
self.targets.append(outputs["targets"])
def on_validation_epoch_end(self, trainer, pl_module):
"""Generate f1, precision and recall heatmap."""
if self.ready:
logger = get_wandb_logger(trainer=trainer)
experiment = logger.experiment
preds = torch.cat(self.preds).cpu().numpy()
targets = torch.cat(self.targets).cpu().numpy()
f1 = f1_score(targets, preds, average=None)
r = recall_score(targets, preds, average=None)
p = precision_score(targets, preds, average=None)
data = [f1, p, r]
# set figure size
plt.figure(figsize=(14, 3))
# set labels size
sn.set(font_scale=1.2)
# set font size
sn.heatmap(
data,
annot=True,
annot_kws={"size": 10},
fmt=".3f",
yticklabels=["F1", "Precision", "Recall"],
)
# names should be uniqe or else charts from different experiments in wandb will overlap
experiment.log({f"f1_p_r_heatmap/{experiment.name}": wandb.Image(plt)}, commit=False)
# reset plot
plt.clf()
self.preds.clear()
self.targets.clear()
class LogImagePredictions(Callback):
"""Logs a validation batch and their predictions to wandb.
Example adapted from:
https://wandb.ai/wandb/wandb-lightning/reports/Image-Classification-using-PyTorch-Lightning--VmlldzoyODk1NzY
"""
def __init__(self, num_samples: int = 8):
super().__init__()
self.num_samples = num_samples
self.ready = True
def on_sanity_check_start(self, trainer, pl_module):
self.ready = False
def on_sanity_check_end(self, trainer, pl_module):
"""Start executing this callback only after all validation sanity checks end."""
self.ready = True
def on_validation_epoch_end(self, trainer, pl_module):
if self.ready:
logger = get_wandb_logger(trainer=trainer)
experiment = logger.experiment
# get a validation batch from the validation dat loader
val_samples = next(iter(trainer.datamodule.val_dataloader()))
val_imgs, val_labels = val_samples
# run the batch through the network
val_imgs = val_imgs.to(device=pl_module.device)
logits = pl_module(val_imgs)
preds = torch.argmax(logits, dim=-1)
# log the images as wandb Image
experiment.log(
{
f"Images/{experiment.name}": [
wandb.Image(x, caption=f"Pred:{pred}, Label:{y}")
for x, pred, y in zip(
val_imgs[: self.num_samples],
preds[: self.num_samples],
val_labels[: self.num_samples],
)
]
}
)