-
-
Notifications
You must be signed in to change notification settings - Fork 698
/
Copy pathstippling.frag
executable file
·77 lines (68 loc) · 2.31 KB
/
stippling.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// Author: @patriciogv - 2015
// Title: Stippling
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
// Cellular noise ("Worley noise") in 2D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Permutation polynomial: (34x^2 + x) mod 289
vec4 permute(vec4 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
// Cellular noise, returning F1 and F2 in a vec2.
// Speeded up by using 2x2 search window instead of 3x3,
// at the expense of some strong pattern artifacts.
// F2 is often wrong and has sharp discontinuities.
// If you need a smooth F2, use the slower 3x3 version.
// F1 is sometimes wrong, too, but OK for most purposes.
vec2 cellular2x2(vec2 P) {
#define K 0.142857142857 // 1/7
#define K2 0.0714285714285 // K/2
#define jitter 0.8 // jitter 1.0 makes F1 wrong more often
vec2 Pi = mod(floor(P), 289.0);
vec2 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4 ox = mod(p, 7.0)*K+K2;
vec4 oy = mod(floor(p*K),7.0)*K+K2;
vec4 dx = Pfx + jitter*ox;
vec4 dy = Pfy + jitter*oy;
vec4 d = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
// Sort out the two smallest distances
#if 0
// Cheat and pick only F1
d.xy = min(d.xy, d.zw);
d.x = min(d.x, d.y);
return d.xx; // F1 duplicated, F2 not computed
#else
// Do it right and find both F1 and F2
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap if smaller
d.xz = (d.x < d.z) ? d.xz : d.zx;
d.xw = (d.x < d.w) ? d.xw : d.wx;
d.y = min(d.y, d.z);
d.y = min(d.y, d.w);
return sqrt(d.xy);
#endif
}
void main(void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st = (st-.5)*.75+.5;
if (u_resolution.y > u_resolution.x ) {
st.y *= u_resolution.y/u_resolution.x;
st.y -= (u_resolution.y*.5-u_resolution.x*.5)/u_resolution.x;
} else {
st.x *= u_resolution.x/u_resolution.y;
st.x -= (u_resolution.x*.5-u_resolution.y*.5)/u_resolution.y;
}
vec2 F = cellular2x2(st*20.);
vec2 pos = st-.5;
float a = dot(pos,pos)-u_time*0.1;
float n = step(abs(sin(a*3.1415*5.)),F.x*2.);
gl_FragColor = vec4(n, n, n, 1.0);
}