Skip to content

Latest commit

 

History

History
44 lines (41 loc) · 3.17 KB

time_integration.md

File metadata and controls

44 lines (41 loc) · 3.17 KB

[Time integration methods](@id time-integration)

Trixi.jl is compatible with the SciML ecosystem for ordinary differential equations. In particular, explicit Runge-Kutta methods from OrdinaryDiffEq.jl are tested extensively. Interesting classes of time integration schemes are

Some common options for solve from OrdinaryDiffEq.jl are the following. Further documentation can be found in the SciML docs.

  • If you use a fixed time step method like CarpenterKennedy2N54, you need to pass a time step as dt=.... If you use a StepsizeCallback, the value passed as dt=... is irrelevant since it will be overwritten by the StepsizeCallback. If you want to use an adaptive time step method such as SSPRK43 or RDPK3SpFSAL49 and still want to use CFL-based step size control via the StepsizeCallback, you need to pass the keyword argument adaptive=false to solve.
  • You should usually set save_everystep=false. Otherwise, OrdinaryDiffEq.jl will (try to) save the numerical solution after every time step in RAM (until you run out of memory or start to swap).
  • You can set the maximal number of time steps via maxiters=....
  • SSP methods and many low-storage methods from OrdinaryDiffEq.jl support stage_limiter!s and step_limiter!s, e.g., PositivityPreservingLimiterZhangShu from Trixi.jl.
  • If you start Julia with multiple threads and want to use them also in the time integration method from OrdinaryDiffEq.jl, you need to pass the keyword argument thread=OrdinaryDiffEq.True() to the algorithm, e.g., RDPK3SpFSAL49(thread=OrdinaryDiffEq.True()) or CarpenterKennedy2N54(thread=OrdinaryDiffEq.True(), williamson_condition=false). For more information on using thread-based parallelism in Trixi.jl, please refer to Shared-memory parallelization with threads.
  • If you use error-based step size control (see also the section on [error-based adaptive step sizes](@ref adaptive_step_sizes) together with MPI, you need to pass internalnorm=ode_norm and you should pass unstable_check=ode_unstable_check to OrdinaryDiffEq's solve, which are both included in ode_default_options.

!!! note "Number of rhs! calls" If you use explicit Runge-Kutta methods from OrdinaryDiffEq.jl, the total number of rhs! calls can be (slightly) bigger than the number of steps times the number of stages, e.g. to allow for interpolation (dense output), root-finding for continuous callbacks, and error-based time step control. In general, you often should not need to worry about this if you use Trixi.jl.