-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
276 lines (235 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import random
from scipy.optimize import *
from math import *
import matplotlib.pyplot as plt
from celestial_body import *
from celestial_orbit import *
from ksp_resources import *
from matplotlib.patches import Ellipse
from matplotlib.patches import Circle
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.colors
import timeit
import scipy as sp
import satellite
import ksp_part_resource as KSP_PART
import ksp_part_remotetech
import ksp_part_squad
import copy
import itertools
def FuelFraction(dV, I_sp, g0 = 9.81):
# dv = I_sp*g0 * ln(M0/M_dry)
# M0/M_dry = exp(dV/v_e)
# M0/(M0 - M_f) = exp(dV/v_e)
# (M0 - M_f)/M0 = 1/exp(dV/v_e)
# 1 - FF = exp(-dV/v_e)
# FF = 1 - exp(-dV/v_e)
return 1 - math.exp(-dV / (I_sp * g0))
def FuelMass(dV, payload_mass, I_sp, g0 = 9.81):
# ff = M_fuel / M0 = M_fuel / (M_dry + M_fuel)
# M_dry = M_fuel* (1 - ff)
return payload_mass/ (1 - FuelFraction(dV, I_sp, g0))
def ForceTotal(I_sp, m_dot, g_0=9.81):
return I_sp * m_dot * g_0
def MassFlow(F_thrust, I_sp, g_0=9.81):
return F_thrust / (I_sp * g_0)
def TotalFuelMass(MassFlow, BurnTime):
return MassFlow * BurnTime
def BurnTime(dV, mass_total, F, I_sp, g0=9.81):
m_dot = MassFlow(F, I_sp, g0)
FF = FuelFraction(dV, I_sp, g0)
mass_fuel = mass_total * FF
return (mass_fuel / m_dot, mass_fuel, m_dot, FF)
def delta_v(payload_mass, fuel_mass, I_sp, g0=9.81):
return I_sp * g0 * math.log((fuel_mass + payload_mass) / payload_mass)
def Satellite_ElectricalDesign(orbit, use_power):
shadow_time = orbit.iterative_max_time_in_shadow()
light_time = orbit.orbital_period() - shadow_time
energy = shadow_time * use_power
solar_cell_power = energy / light_time + use_power
return (energy, solar_cell_power)
def CommSatelliteMinPower(orbit, core, downlink_antenna, constellation_satellite_num, extra_antennas=None,
extra_energy=0, distance_safety_margin=0.1):
extra_antennas_power = 0
if extra_antennas is not None:
extra_antennas_power = sum(antenna.power for antenna in extra_antennas)
min_obj = minimize_scalar(
lambda x: -orbit.pythagoral_distance(orbit.to_true_anomaly(MeanAnomaly(x)),
orbit.to_true_anomaly(
MeanAnomaly(x - (2 * pi) / constellation_satellite_num))),
bounds=(0, pi), method="bounded", options={'maxiter': 1000, 'xatol': np.finfo(float).eps})
dis = (1 + distance_safety_margin) * -min_obj.fun
return core.power + extra_energy + extra_antennas_power + downlink_antenna.power # + communication_antenna.power*constellation_satellite_num
class TestObj(object):
def __init__(self, payload=None):
self.__all_parts = []
self.payload = payload
self.structural_mass = 0
@property
def empty_mass(self):
return self.structural_mass + sum(part.mass for part in self.__all_parts if hasattr(part, "mass"))
@property
def mass(self):
mass = self.empty_mass
try:
mass += self.payload.mass
except AttributeError:
pass
return mass
if __name__ == "__main__":
Kerbol = CelestialStar(name="Kerbol", mass=1.7565670E28, mu=1.1723328E18, radius=261600000,
sidereal_rotation_period=432000, atmosphere_height=600000, brightness=1)
moho_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=radians(7), longitude_ascending_node=radians(70),
argument_periapsis=radians(15), eccentricity=0.2, semimajoraxis=5263138304)
Moho = CelestialBody_Orbitting(name="Moho", mass=2.5263617e21, mu=1.6860938e11, radius=250000,
sidereal_rotation_period=1210000, SOI_radius=9646663, atmosphere_height=0,
mean_anomaly_at_epoch=3.14, orbit=moho_orbit)
eve_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=radians(2.1), longitude_ascending_node=radians(15),
argument_periapsis=radians(0), eccentricity=0.01, semimajoraxis=9832684544)
Eve = CelestialBody_Orbitting(name="Eve", mass=1.2244127e23, mu=8.1717302e12, radius=700000,
sidereal_rotation_period=81661.857, SOI_radius=85109365, atmosphere_height=90000,
mean_anomaly_at_epoch=3.14, orbit=eve_orbit)
gilly_orbit = CelestialOrbit(celestial_parent_body=Eve, inclination=radians(12), longitude_ascending_node=radians(80),
argument_periapsis=radians(10), eccentricity=0.55, semimajoraxis=31500000)
Gilly = CelestialBody_Orbitting(name="Gilly", mass=1.2420512e17, mu=8289449.8, radius=13000,
sidereal_rotation_period=28255, SOI_radius=126123.27, atmosphere_height=0,
mean_anomaly_at_epoch=0.9, orbit=gilly_orbit)
kerbin_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=0, longitude_ascending_node=0,
argument_periapsis=0, eccentricity=0.000, semimajoraxis=13599840256)
Kerbin = CelestialBody_Orbitting(name="Kerbin", mass=5.2915793e22, mu=3.5316000e15, radius=600000,
sidereal_rotation_period=21549.425, SOI_radius=84159286, atmosphere_height=70000,
mean_anomaly_at_epoch=0.5, orbit=kerbin_orbit)
mun_orbit = CelestialOrbit(celestial_parent_body=Kerbin, inclination=0, longitude_ascending_node=0,
argument_periapsis=0, eccentricity=0, semimajoraxis=12000000)
Mun = CelestialBody_Orbitting(name="Mun", mass=9.7600236e20, mu=6.51383980e10,
radius=200000, sidereal_rotation_period=138984.38,
mean_anomaly_at_epoch=1.7, SOI_radius=2429559.1, orbit=mun_orbit)
minmus_orbit = CelestialOrbit(celestial_parent_body=Kerbin, inclination=radians(6),
longitude_ascending_node=radians(78), argument_periapsis=radians(38), eccentricity=0.0,
semimajoraxis=47000000)
Minmus = CelestialBody_Orbitting(name="Minmus", mass=2.6457897e19, mu=1.7658000e9,
radius=60000, sidereal_rotation_period=40400,
mean_anomaly_at_epoch=0.9, SOI_radius=2247428.4, orbit=minmus_orbit)
duna_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=radians(0.06), longitude_ascending_node=radians(135.5),
argument_periapsis=radians(0), eccentricity=0.05, semimajoraxis=20726155264)
Duna = CelestialBody_Orbitting(name="Duna", mass=4.5154812e12, mu=3.0136321e11, radius=320000,
sidereal_rotation_period=65517.859, SOI_radius=47921949, atmosphere_height=50000,
mean_anomaly_at_epoch=3.14, orbit=duna_orbit)
ike_orbit = CelestialOrbit(celestial_parent_body=Duna, inclination=radians(0.2), longitude_ascending_node=radians(0),
argument_periapsis=radians(0), eccentricity=0.03, semimajoraxis=3200000)
Ike = CelestialBody_Orbitting(name="Ike", mass=2.7821949e20, mu=1.8568369e10, radius=130000,
sidereal_rotation_period=65517.862, SOI_radius=1049598.9, atmosphere_height=0,
mean_anomaly_at_epoch=1.7, orbit=ike_orbit)
dres_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=radians(5), longitude_ascending_node=radians(280),
argument_periapsis=radians(90), eccentricity=0.14, semimajoraxis=40839348203)
Dres = CelestialBody_Orbitting(name="Dres", mass=3.2191322e20, mu=2.1484489e10, radius=138000,
sidereal_rotation_period=34800, SOI_radius=32832840, atmosphere_height=0,
mean_anomaly_at_epoch=3.14, orbit=dres_orbit)
jool_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=radians(1.304), longitude_ascending_node=radians(52),
argument_periapsis=radians(0), eccentricity=0.05, semimajoraxis=68773560320)
Jool = CelestialBody_Orbitting(name="Jool", mass=4.2332635e24, mu=2.8252800e14, radius=6000000,
sidereal_rotation_period=36000, SOI_radius=2.4559852e9, atmosphere_height=200000,
mean_anomaly_at_epoch=0.1, orbit=jool_orbit)
laythe_orbit = CelestialOrbit(celestial_parent_body=Jool, inclination=radians(0), longitude_ascending_node=radians(0),
argument_periapsis=radians(0), eccentricity=0, semimajoraxis=27184000)
Laythe = CelestialBody_Orbitting(name="Laythe", mass=2.9397663e22, mu=1.9620000e12, radius=500000,
sidereal_rotation_period=52980.879, SOI_radius=3723645.8, atmosphere_height=50000,
mean_anomaly_at_epoch=3.14, orbit=laythe_orbit)
vall_orbit = CelestialOrbit(celestial_parent_body=Jool, inclination=radians(0), longitude_ascending_node=radians(0),
argument_periapsis=radians(0), eccentricity=0, semimajoraxis=43152000)
Vall = CelestialBody_Orbitting(name="Vall", mass=3.1088028e21, mu=2.0748150e11, radius=300000,
sidereal_rotation_period=105962.09, SOI_radius=2406401.4, atmosphere_height=0,
mean_anomaly_at_epoch=0.9, orbit=vall_orbit)
tylo_orbit = CelestialOrbit(celestial_parent_body=Jool, inclination=radians(0.025), longitude_ascending_node=radians(0),
argument_periapsis=radians(0), eccentricity=0, semimajoraxis=68500000)
Tylo = CelestialBody_Orbitting(name="Tylo", mass=4.2332635e22, mu=2.852800e12, radius=600000,
sidereal_rotation_period=211926.36, SOI_radius=10856518, atmosphere_height=0,
mean_anomaly_at_epoch=3.14, orbit=tylo_orbit)
bop_orbit = CelestialOrbit(celestial_parent_body=Jool, inclination=radians(15), longitude_ascending_node=radians(10),
argument_periapsis=radians(25), eccentricity=0.24, semimajoraxis=128500000)
Bop = CelestialBody_Orbitting(name="Bop", mass=3.7261536e19, mu=2.4868349e9, radius=65000,
sidereal_rotation_period=544507.43, SOI_radius=1221060.9, atmosphere_height=0,
mean_anomaly_at_epoch=0.9, orbit=bop_orbit)
pol_orbit = CelestialOrbit(celestial_parent_body=Jool, inclination=radians(4.25), longitude_ascending_node=radians(2),
argument_periapsis=radians(15), eccentricity=0.17, semimajoraxis=179890000)
Pol = CelestialBody_Orbitting(name="Pol", mass=1.0813636e19, mu=7.2170208e8, radius=44000,
sidereal_rotation_period=901902.62, SOI_radius=1042138.9, atmosphere_height=0,
mean_anomaly_at_epoch=0.9, orbit=pol_orbit)
eeloo_orbit = CelestialOrbit(celestial_parent_body=Kerbol, inclination=radians(6.15), longitude_ascending_node=radians(50),
argument_periapsis=radians(260), eccentricity=0.26, semimajoraxis=90118820000)
Eeloo = CelestialBody_Orbitting(name="Eeloo", mass=1.1149358e21, mu=7.4410815e10, radius=210000,
sidereal_rotation_period=19460, SOI_radius=1.1908294e8, atmosphere_height=0,
mean_anomaly_at_epoch=3.14, orbit=eeloo_orbit)
max_orbit = CelestialOrbit(celestial_parent_body=Kerbin, inclination=0, longitude_ascending_node=0,
argument_periapsis=0, eccentricity=0, semimajoraxis=Kerbin.SOI)
max_mun_orbit = CelestialOrbit(celestial_parent_body=Mun, inclination=0, longitude_ascending_node=0,
argument_periapsis=0, eccentricity=0, semimajoraxis=Mun.SOI)
max_minmus_orbit = CelestialOrbit(celestial_parent_body=Minmus, inclination=0, longitude_ascending_node=0,
argument_periapsis=0, eccentricity=0, semimajoraxis=Minmus.SOI)
sat_orbit = CelestialOrbit(celestial_parent_body=Kerbin, inclination=pi, longitude_ascending_node=pi/3,
argument_periapsis=pi, eccentricity=0.0, semimajoraxis=Minmus.SOI)
techs = [
"basicScience",
"start",
"electrics",
"advElectrics",
"largeElectrics",
"experimentalElectrics",
"specializedElectrics"
]
sat = satellite.Satellite(orbit=sat_orbit, name="sat1") #type:satellite.Satellite
print("here")
sat.addPart(KSP_PART.ControlProbe["probeCoreOcto"])
for t_sat in range(5):
sat.addPart(KSP_PART.Antenna["mediumDishAntenna"])
print(sat.orbit.max_time_in_shadow(), sat.orbit.time_in_shadow(0) - sat.orbit.max_time_in_shadow())
print(sat.average_max_distance_to_star())
print(sat.max_distance_to_star())
#KSP_PART.BatteryPack["batteryPack"].price = 90
#KSP_PART.BatteryPack["batteryBank"].mass *= 1000
def check_battery(l, r, useful_storage = np.inf):
left_power = min(l.electric_charge, useful_storage)
right_power = min(r.electric_charge, useful_storage)
left_v = (left_power/l.mass, left_power/l.price, left_power)
right_v = (right_power/r.mass, right_power/r.price, right_power)
t = any(ll > rr for ll,rr in zip(left_v, right_v))
return t
def check_solar_cell(l, r, distance, useful_power = np.inf):
left_power = min(l.getChargeRate(distance), useful_power)
right_power = min(r.getChargeRate(distance), useful_power)
left_v = (left_power/l.mass, left_power/l.price, left_power)
right_v = (right_power/r.mass, right_power/r.price, right_power)
print(l.title, r.title)
print(left_power, right_power)
print(left_v, right_v)
print([ll > rr for ll,rr in zip(left_v, right_v)])
t = any(ll > rr for ll,rr in zip(left_v, right_v))
return t
power_requirements = satellite.calculate_minimal_charge_rate(sat)
print(power_requirements)
energy_storage_requirements = sat.calculate_minimal_electric_storage()
energy_storage_requirements = 3900
r = satellite.generate_all_battery(techs, energy_storage_requirements, check_battery)
for t_sat in r:
print("----------")
m = sum(i.mass for i in t_sat)
p = sum(i.price for i in t_sat)
print("price:", p, "Mass", m)
for j in t_sat:
print(j.name)
print("---------------------------")
all_copies = satellite.generate_all_solar_cells(techs, power_requirements,
distance=sat.max_distance_to_star(),
first_order_check=check_solar_cell)
for t_sat in all_copies:
print("----------")
m = sum(i.mass for i in t_sat)
p = sum(i.price for i in t_sat)
print("price:", p, "Mass", m)
for j in t_sat:
print(j.title)
#for i in range(1):
# energy_storage_requirements = satellite.calculate_minimal_electric_storage(sat)
# #print(energy_storage_requirements)
# all_copies = satellite.generate_all_battery(sat,techs, energy_storage_requirements, check_battery)
print("done")