-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsplitseqdemultiplex_0.2.1.sh
executable file
·532 lines (459 loc) · 20.7 KB
/
splitseqdemultiplex_0.2.1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#!/bin/bash
#alias python='python'
#####################################################################################
# Example Use #
# Script modified on 29the august, 2019
# A python script Collapse_Ranhex_Odt.py ( Dipankar / Dumaatravaie ) had replaced the bash script Collapse_Ranhex_Odt.sh
# Fixed the issue with 'Too many arguments error' in parallel ( Dipankar / Dumaatravaie ) in the case of Large Number of cells (> 50,000 or more )
#####################################################################################
#bash splitseqdemultiplex.sh \
# -n 12 \
# -v merged \
# -e 1 \
# -m 10 \
# -1 Round1_barcodes_new4.txt \
# -2 Round2_barcodes_new4.txt \
# -3 Round3_barcodes_new4.txt \
# -f SRR6750041_1_smalltest.fastq \
# -r SRR6750041_2_smalltest.fastq \
# -o results \
# -t 8000 \
# -g 100000 \
# -a star \
# -x /path/to/star/genome/index/folder/GRCm38/ \
# -y /path/to/matching/genome/annotation/gtf/GRCm38.gtf \
# -k /path/to/kallisto/index/.idx/ \
# -i /path/to/kallisto/index/.fasta
################/media/bachar.d/ec530b5a-02c3-4ebe-8b79-8d8a7fc98220/MirCos_splitSeq/SPLiT-Seq_demultiplexing_annotation_pipeline/New_Script_Test/results_b
# Dependencies #
################
# Python3 must be installed and accessible as "python" from your system's path
type python &>/dev/null || { echo "ERROR python is not installed or is not accessible from the PATH as python"; exit 1; }
# UMI_Tools must be installed and accessible from the PATH as "umi_tools"
type umi_tools &>/dev/null || { echo "ERROR umi_tools is not installed or is not accessible from the PATH as umi_tools"; exit 1; }
# parallel must be installed and accessible from the path as "parallel"
type parallel &>/dev/null || { echo "ERROR parallel is not installed or is not accessible from the PATH as parallel"; exit 1; }
# Not to get the error "/bin/ls: Argument list too long"
# So, a solution is to increase the amount of space available for the stack.
# https://unix.stackexchange.com/questions/45583/argument-list-too-long-how-do-i-deal-with-it-without-changing-my-command
ulimit -s 65536
###########################
### Manually Set Inputs ###
###########################
export NUMCORES="4"
export VERSION="fast"
export ERRORS="1"
export MINREADS="10"
export ROUND1="Round1_barcodes_new5.txt"
export ROUND2="Round2_barcodes_new4.txt"
export ROUND3="Round3_barcodes_new4.txt"
export FASTQ_F="SRR6750041_1_smalltest.fastq"
export FASTQ_R="SRR6750041_2_smalltest.fastq"
export OUTPUT_DIR="results_multiThread"
export TARGET_MEMORY="8000"
export GRANULARITY="100000"
export COLLAPSE="true"
export ALIGN="star"
export STARGENOME="/mnt/isilon/davidson_lab/ranum/Tools/STAR_Genomes/mm10/"
#STARGTF="GTF /mnt/isilon/davidson_lab/ranum/Tools/STAR_Genomes/mm10_Raw/Mus_musculus.GRCm38.96.chr.gtf"
export SAF="SAF ../GRCm38_genes.saf"
#KALLISTOINDEXIDX="/mnt/isilon/davidson_lab/ranum/Tools/Kallisto_Index/GRCm38.idx"
#KALLISTOINDEXFASTA="/mnt/isilon/davidson_lab/ranum/Tools/Kallisto_Index/Mus_musculus.GRCm38.cdna.all.fa"
################################
### User Inputs Using Getopt ###
################################
# NOTE on mac systems the options won't work because mac doesnt have the GNU version of getopt by default. GNU getopt can be installed on mac using homebrew. You can do this by running 'brew install gnu_getopt'
# Once gnu_getopt is installed you can run it with using this '/usr/local/Cellar/gnu-getopt/1.1.6/bin/getopt' as the executable in the place of 'getopt' below.
# read the options
TEMP=`getopt -o n:v:e:m:1:2:3:f:r:o:t:g:c:a:x:y:s:k:i --long numcores:,errors:,minreads:,round1barcodes:,round2barcodes:,round3barcodes:,fastqF:,fastqR:,outputdir:,targetMemory:,granularity:,collapseRandomHexamers:,align:,starGenome:,starGTF:,geneAnnotationSAF:,kallistoIndexIDX:,kallistoIndexFASTA: -n 'test.sh' -- "$@"`
eval set -- "$TEMP"
# extract options and their arguments into variables.
echo "Checking options..."
while true ; do
case "$1" in
-n|--numcores)
case "$2" in
"") shift 2 ;;
*) NUMCORES=$2 ; shift 2 ;;
esac ;;
-v|--version)
case "$2" in
"") shift 2 ;;
*) VERSION=$2 ; shift 2 ;;
esac ;;
-e|--errors)
case "$2" in
"") shift 2 ;;
*) ERRORS=$2 ; shift 2 ;;
esac ;;
-m|--minreads)
case "$2" in
"") shift 2 ;;
*) MINREADS=$2 ; shift 2 ;;
esac ;;
-1|--round1barcodes)
case "$2" in
"") shift 2 ;;
*) ROUND1=$2 ; shift 2 ;;
esac ;;
-2|--round2barcodes)
case "$2" in
"") shift 2 ;;
*) ROUND2=$2 ; shift 2 ;;
esac ;;
-3|--round3barcodes)
case "$2" in
"") shift 2 ;;
*) ROUND3=$2 ; shift 2 ;;
esac ;;
-f|--fastqF)
case "$2" in
"") shift 2 ;;
*) FASTQ_F=$2 ; shift 2 ;;
esac ;;
-r|--fastqR)
case "$2" in
"") shift 2 ;;
*) FASTQ_R=$2 ; shift 2 ;;
esac ;;
-o|--outputdir)
case "$2" in
"") shift 2 ;;
*) OUTPUT_DIR=$2 ; shift 2 ;;
esac ;;
-t|--targetMemory)
case "$2" in
"") shift 2;;
*) TARGET_MEMORY=$2 ; shift 2 ;;
esac ;;
-g|--granularity)
case "$2" in
"") shift 2;;
*) GRANULARITY=$2 ; shift 2 ;;
esac ;;
-c|--collapseRandomHexamers)
case "$2" in
"") shift 2;;
*) COLLAPSE=$2 ; shift 2 ;;
esac ;;
-a|--align)
case "$2" in
"") shift 2;;
*) ALIGN=$2 ; shift 2 ;;
esac ;;
-x|--starGenome)
case "$2" in
"") shift 2;;
*) STARGENOME=$2 ; shift 2 ;;
esac ;;
-y|--starGTF)
case "$2" in
"") shift 2;;
*) STARGTF=$2 ; shift 2 ;;
esac ;;
-s|--geneAnnotationSAF)
case "$2" in
"") shift 2;;
*) SAF=$2 ; shift 2 ;;
esac ;;
-k|--kallistoIndexIDX)
case "$2" in
"") shift 2;;
*) KALLISTOINDEXIDX=$2 ; shift 2 ;;
esac ;;
-i|--kallistoIndexFASTA)
case "$2" in
"") shift 2;;
*) KALLISTOINDEXFASTA=$2 ; shift 2 ;;
esac ;;
--) shift ; break ;;
*) echo "Internal error!" ; exit 1 ;;
esac
done
###############################
### Write Input Args To Log ###
###############################
# Print the arguments provided as input to splitseqdemultiplex.sh
echo "splitseqdemultiplex.sh has been run with the following input arguments"
echo "numcores = $NUMCORES"
echo "errors = $ERRORS"
echo "minreadspercell = $MINREADS"
echo "round1_barcodes = $ROUND1"
echo "round2_barcodes = $ROUND2"
echo "round3_barcodes = $ROUND3"
echo "fastq_f = $FASTQ_F"
echo "fastq_r = $FASTQ_R"
echo "targetMemory = $TARGET_MEMORY"
echo "granularity = $GRANULARITY"
echo "collapseRandomHexamers = $COLLAPSE"
echo "align = $ALIGN"
echo "starGenome = $STARGENOME"
echo "starGTF = $STARGTF"
echo "geneAnnotationSAF = $SAF"
echo "kallistoIndexIDX = $KALLISTOINDEXIDX"
echo "kallistoIndexFASTA = $KALLISTOINDEXFASTA"
#if [ $COLLAPSE = true ]
#then
#ROUND1="Round1_barcodes_new5.txt"
#fi
if [ $VERSION = fast ]
then
#######################################
# STEP 1: Demultiplex Using Barcodes #
#######################################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP1: Demultiplex using barcodes. Current time : $now"
# Demultiplex the fastqr file using barcodes
mkdir $OUTPUT_DIR
# Set up a function to parallelize the Demultiplex Using Barcodes Step
linesInInputFastq=$(wc -l < $FASTQ_R)
num_linesPerSplitFastq=$(expr $linesInInputFastq / $NUMCORES)
#split --lines=${num_linesPerSplitFastq} $FASTQ_R split_fastq_R_
#split --lines=${num_linesPerSplitFastq} $FASTQ_F split_fastq_F_
head -n 100 $FASTQ_R > position_learner_fastqr.fastq
split --number="l/$NUMCORES" $FASTQ_R split_fastq_R_
split --number="l/$NUMCORES" $FASTQ_F split_fastq_F_
#my_func() {
# python InDevOptimizations/DemultiplexUsingBarcodes_New_V1.py -f "split_fastq_F$1" -r "split_fastq_R$1" -b $GRANULARITY -o $OUTPUT_DIR -e $ERRORS -p -t $MINREADS
# }
#export -f my_func
#ls split_fastq_F* | awk -F "split_fastq_F" '{print $1}' | parallel my_func {}
ls split_fastq_F* | awk -F "split_fastq_F" '{print $2}' | parallel "python InDevOptimizations/DemultiplexUsingBarcodes_New_V1.py -f split_fastq_F{} -r split_fastq_R{} -b $GRANULARITY -o $OUTPUT_DIR -e $ERRORS -p -t $MINREADS"
#python InDevOptimizations/DemultiplexUsingBarcodes_New_V1.py -f $FASTQ_F -r $FASTQ_R -b $GRANULARITY -o $OUTPUT_DIR -e $ERRORS -p -t $MINREADS
#--minreads $MINREADS --round1barcodes $ROUND1 --round2barcodes $ROUND2 --round3barcodes $ROUND3 --fastqr $FASTQ_R --errors $ERRORS --outputdir $OUTPUT_DIR --targetMemory $TARGET_MEMORY --granularity $GRANULARITY
#echo "$(ls $OUTPUT_DIR/*.fastq | wc -l) results files 'cells' were demultiplexed from the input .fastq file"
rm position_learner_fastqr.fastq
rm split_fastq_*
###########################
# STEP 5: Perform Mapping #
###########################
# generate batch file
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP5: Performing Mapping. Current time : $now"
if [ $ALIGN = star ]
then
pushd $OUTPUT_DIR
# Run alignment of merged .fastq file using STAR
STAR --runThreadN $NUMCORES \
--readFilesIn MergedCells_1.fastq \
--outFilterMismatchNoverLmax 0.05 \
--genomeDir $STARGENOME \
--alignIntronMax 20000 \
--outSAMtype BAM SortedByCoordinate
#cp /media/bachar.d/ec530b5a-02c3-4ebe-8b79-8d8a7fc98220/MirCos_splitSeq/SPLiT-Seq_demultiplexing-master/results/*.bam /media/bachar.d/ec530b5a-02c3-4ebe-8b79-8d8a7fc98220/MirCos_splitSeq/SPLiT-Seq_demultiplexing-master/
if [[ $(echo "$SAF" | awk '{print $1}') = SAF ]]
then
countsMode=$(echo "$SAF" | awk '{print $1}')
countsFile=$(echo "$SAF" | awk '{print $2}')
#echo $countsFile
#echo $countsMode
# Assign reads to genes
# Removed -M parameters for excluding multimapping reads
featureCounts -F $countsMode \
-a $countsFile \
-o gene_assigned \
-R BAM Aligned.sortedByCoord.out.bam \
-T $NUMCORES \
-M
else
countsMode=$(echo "$STARGTF" | awk '{print $1}')
countsFile=$(echo "$STARGTF" | awk '{print $2}')
#echo "Hello world "
#echo $countsFile
#echo "Hello world "
#echo $countsMode
# Removed -M parameters for excluding multimapping reads
featureCounts -F $countsMode \
-a $countsFile \
-o gene_assigned \
-R BAM Aligned.sortedByCoord.out.bam \
-T $NUMCORES \
-M
fi
samtools sort Aligned.sortedByCoord.out.bam.featureCounts.bam -o assigned_sorted.bam
samtools index assigned_sorted.bam
# Count UMIs per gene per cell
umi_tools count --wide-format-cell-counts --per-gene --gene-tag=XT --assigned-status-tag=XS --per-cell -I assigned_sorted.bam -S counts.tsv.gz
popd
fi
fi
if [ $VERSION = merged ]
then
#######################################
# STEP 1: Demultiplex Using Barcodes #
#######################################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP1: Demultiplex using barcodes. Current time : $now"
# Demultiplex the fastqr file using barcodes
python demultiplex_using_barcodes.py --minreads $MINREADS --round1barcodes $ROUND1 --round2barcodes $ROUND2 --round3barcodes $ROUND3 --fastqr $FASTQ_R --errors $ERRORS --outputdir $OUTPUT_DIR --targetMemory $TARGET_MEMORY --granularity $GRANULARITY
echo "$(ls $OUTPUT_DIR/*.fastq | wc -l) results files 'cells' were demultiplexed from the input .fastq file"
##########################################################################
# STEP 2: Collapse OligoDT and RandomHexamer Barcodes from the same well #
##########################################################################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP2: Collapse OligoDT and RandomHexamer Barcodes from the same well. Current time : $now"
if [ $COLLAPSE = true ]
then
# Bash script is painfully slow
# Replaced by python script, which is 100 times faster then the bash script
#bash Collapse_RanHex_Odt.sh
python Collapse_RanHex_Odt.py
fi
echo "after collapsing OligoDT and RandomHexamer Barcodes, $(ls $OUTPUT_DIR/*.fastq | wc -l) results files 'cells' remain."
##########################################################
# STEP 3: For every cell find matching paired end reads #
##########################################################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP3: Finding read mate pairs. Current time : $now"
# Now we need to collect the other read pair. To do this we can collect read IDs from the $OUTPUT_DIR files we generated in step one.
# Generate an array of cell filenames
python matepair_finding.py --input $OUTPUT_DIR --fastqf $FASTQ_F --output $OUTPUT_DIR --targetMemory $TARGET_MEMORY --granularity $GRANULARITY
########################
# STEP 4: Extract UMIs #
########################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP4: Extracting UMIs. Current time : $now"
# Implement new method for umi and cell barcode extraction
pushd $OUTPUT_DIR
#parallel python ../Extract_BC_UMI.py -R {} -F {}-MATEPAIR ::: $(ls *.fastq)
# Modified the original parallel command to avoid TOO many arguments error
ls | grep '\.fastq$' | parallel python ../Extract_BC_UMI.py -R {} -F {}-MATEPAIR
cat *_1.fastq > MergedCells
#parallel rm {} ::: $(ls *fastq*)
# This command has been changed to avoid Arguments Lists Too Long error
# Above command Gives error Argument List Too Long using parallel rm command, and the pipeline halts
# So, we use either loop to delete the files one by one
# for i in *.fastq*;do rm "$i";done
# Or, we can increase stack limit by command ulimit -s 65536, done at the beginning of this script
# https://unix.stackexchange.com/questions/45583/argument-list-too-long-how-do-i-deal-with-it-without-changing-my-command
# and we modify the original parallel commands like below, to avoid too many parameters errors
#parallel rm {} ::: $(ls *fastq*)
ls | grep '\.fastq*' | parallel rm {}
mv MergedCells MergedCells_1.fastq
popd
###########################
# STEP 5: Perform Mapping #
###########################
# generate batch file
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP5: Performing Mapping. Current time : $now"
if [ $ALIGN = star ]
then
pushd $OUTPUT_DIR
# Run alignment of merged .fastq file using STAR
STAR --runThreadN $NUMCORES \
--readFilesIn MergedCells_1.fastq \
--outFilterMismatchNoverLmax 0.05 \
--genomeDir $STARGENOME \
--alignIntronMax 20000 \
--outSAMtype BAM SortedByCoordinate
#cp /media/bachar.d/ec530b5a-02c3-4ebe-8b79-8d8a7fc98220/MirCos_splitSeq/SPLiT-Seq_demultiplexing-master/results/*.bam /media/bachar.d/ec530b5a-02c3-4ebe-8b79-8d8a7fc98220/MirCos_splitSeq/SPLiT-Seq_demultiplexing-master/
if [ $(echo "$SAF" | awk '{print $1}') = SAF ]
then
countsMode=$(echo "$SAF" | awk '{print $1}')
countsFile=$(echo "$SAF" | awk '{print $2}')
#echo $countsFile
#echo $countsMode
# Assign reads to genes
# Removed -M parameters for excluding multimapping reads
featureCounts -F $countsMode \
-a $countsFile \
-o gene_assigned \
-R BAM Aligned.sortedByCoord.out.bam \
-T $NUMCORES \
-M
else
countsMode=$(echo "$STARGTF" | awk '{print $1}')
countsFile=$(echo "$STARGTF" | awk '{print $2}')
#echo "Hello world "
#echo $countsFile
#echo "Hello world "
#echo $countsMode
# Removed -M parameters for excluding multimapping reads
featureCounts -F $countsMode \
-a $countsFile \
-o gene_assigned \
-R BAM Aligned.sortedByCoord.out.bam \
-T $NUMCORES \
-M
fi
samtools sort Aligned.sortedByCoord.out.bam.featureCounts.bam -o assigned_sorted.bam
samtools index assigned_sorted.bam
# Count UMIs per gene per cell
umi_tools count --wide-format-cell-counts --per-gene --gene-tag=XT --assigned-status-tag=XS --per-cell -I assigned_sorted.bam -S counts.tsv.gz
popd
fi
fi
if [ $VERSION = split ]
then
#######################################
# STEP 1: Demultiplex Using Barcodes #
#######################################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP1: Demultiplex using barcodes. Current time : $now"
# Demultiplex the fastqr file using barcodes
python demultiplex_using_barcodes.py --minreads $MINREADS --round1barcodes $ROUND1 --round2barcodes $ROUND2 --round3barcodes $ROUND3 --fastqr $FASTQ_R --errors $ERRORS --outputdir $OUTPUT_DIR --targetMemory $TARGET_MEMORY --granularity $GRANULARITY
##########################################################
# STEP 2: For every cell find matching paired end reads #
##########################################################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP2: Finding read mate pairs. Current time : $now"
# Now we need to collect the other read pair. To do this we can collect read IDs from the $OUTPUT_DIR files we generated in step one.
# Generate an array of cell filenames
python matepair_finding.py --input $OUTPUT_DIR --fastqf $FASTQ_F --output $OUTPUT_DIR --targetMemory $TARGET_MEMORY --granularity $GRANULARITY
########################
# STEP 3: Extract UMIs #
########################
# Generate a progress message
now=$(date '+%Y-%m-%d %H:%M:%S')
echo "Beginning STEP3: Extracting UMIs. Current time : $now"
rm -r $OUTPUT_DIR-UMI
mkdir $OUTPUT_DIR-UMI
# Parallelize UMI extraction
{
ls $OUTPUT_DIR | grep \.fastq$ | parallel -j $NUMCORES -k "umi_tools extract -I $OUTPUT_DIR/{} --read2-in=$OUTPUT_DIR/{}-MATEPAIR --bc-pattern=NNNNNNNNNN --log=processed.log --read2-out=$OUTPUT_DIR-UMI/{}"
} &> /dev/null
#################################
# STEP 4: Collect Summary Stats #
#################################
# Print the number of lines and barcode ID for each cell to a file
echo "$(wc -l $OUTPUT_DIR-UMI/*.fastq)" | sed '$d' | sed 's/$OUTPUT_DIR-UMI\///g' > linespercell.txt
###########################
# STEP 5: Perform Mapping #
###########################
# generate batch file
if [ $ALIGN = kallisto ]
then
# generate batch file
rm batch.txt
for file in $(ls results-UMI/); do
echo "$(echo $file | sed 's|.fastq||g')" "$(echo $file | sed 's|fastq|umi|g')" "$(echo $file)" >> batch.txt
python align_kallisto.py -F results-UMI/$file
done
pushd results-UMI
mkdir ../kallisto_output
kallisto pseudo -i $KALLISTOINDEXIDX -o ../kallisto_output --single --umi -b ../batch.txt
cp matrix.cells results4_colNames_cellIDs.txt
popd
pushd kallisto_output
python ../prep_TCC_matrix.py -T matrix.tsv -E matrix.ec -O results -I $KALLISTOINDEXFASTA -G geneIDs
popd
fi
number_of_cells=$(ls -1 "$OUTPUT_DIR-UMI" | wc -l)
echo "a total of $number_of_cells cells were demultiplexed from the input .fastq"
fi
#All finished
#number_of_cells=$(ls -1 "$OUTPUT_DIR-UMI" | wc -l)
now=$(date '+%Y-%m-%d %H:%M:%S')
#echo "a total of $number_of_cells cells were demultiplexed from the input .fastq"
# Re Initialize the stack limit to default
ulimit -s 8192
echo "Current time : $now"
echo "all finished goodbye"