-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvolution_pure_python.py
175 lines (151 loc) · 4.64 KB
/
Convolution_pure_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import struct
import numpy as np
import sys
X = np.zeros((7,7))
X[:,:] = [[0,0,0,0,0,0,0],
[0,1,2,2,1,0,0],
[0,2,1,0,1,1,0],
[0,2,0,2,2,1,0],
[0,1,2,2,2,1,0],
[0,1,1,0,1,2,0],
[0,0,0,0,0,0,0]]
# X[:,:,1] = [[0,0,0,0,0,0,0],
# [0,0,0,0,0,1,0],
# [0,0,1,0,2,0,0],
# [0,0,0,0,2,2,0],
# [0,1,0,2,1,0,0],
# [0,1,2,0,1,0,0],
# [0,0,0,0,0,0,0]]
#
# X[:,:,2] = [[0,0,0,0,0,0,0],
# [0,1,0,2,1,0,0],
# [0,1,1,2,1,1,0],
# [0,2,0,1,2,1,0],
# [0,0,0,1,0,1,0],
# [0,1,2,1,1,1,0],
# [0,0,0,0,0,0,0]]
# initialize parameters randomly
W1 = np.zeros((3, 3, 2))
W1[:,:, 0] = [[ 0,-1, 0],
[-1, 1, 1],
[ 0, 1, 1]]
# W1[:,:,0] = [[-1,-1,-1],
# [ 1, 0, 1],
# [-1, 1, 0]]
#
# W1[:,:,0] = [[ 1,-1, 1],
# [ 1, 0, 0],
# [ 1,-1, 0]]
#W2 = np.zeros((3, 3, 3))
W1[:,:,1] = [[-1,-1, 1],
[ 1, 0, 1],
[ 0,-1, 1]]
# #
# W1[:,:,1] = [[ 0, 1, 1],
# [-1, 0, 1],
# [-1,-1, 0]]
#
# W1[:,:,1] = [[ 0,-1,-1],
# [-1, 0, 0],
# [ 0, 1,-1]]
b1 = np.zeros((1, 1, 2))
b1 += 1
print(b1)
print(W1.shape)
def CONV_forward(input, W, b, stride):
stepsH = ((input.shape[0] - W.shape[0]) / stride + 1)
stepsW = ((input.shape[1] - W.shape[1]) / stride + 1)
if stepsW.is_integer() == False:
sys.exit("Spatial size wrong. Change stride or filter size!")
V = np.zeros((int(stepsH), int(stepsW), int(W.shape[2])))
for layer in range(W.shape[2]):
stepk = 0
for k in range(V.shape[0]):
stepm = 0
for m in range(V.shape[1]):
V[m, k, layer] = np.sum(input[stepm: stepm+W.shape[0],
stepk: stepk+W.shape[1]]*W[:,:,layer]) + b[:,:, layer]
stepm += stride
stepk += stride
cache = (input, W, b)
return V, cache
V1, cache = CONV_forward(X, W1, b1, stride=1)
print('Volume', V1[:,:,1])
def CONV_backward(dV, cache, stride):
(X, W, b) = cache
X_h, X_w = X.shape
W_h, W_w, W_layers = W.shape
dX = np.zeros(X.shape)
dW = np.zeros(W.shape)
#db = np.zeros(b.shape)
for layer in range(W_layers):
stepk = 0
for k in range(dV.shape[0]):
stepm = 0
for m in range(dV.shape[1]):
dW[:,:,layer] += X[stepm: stepm+W_h,
stepk: stepk+W_w]*dV[m,k, layer]
dX[stepm: stepm + W_h,
stepk: stepk + W_w] += W[:,:,layer]*dV[m,k,layer]
#db += dV[m,k,layer]
stepm += stride
stepk += stride
return dX, dW #, db
dX, dW = CONV_backward(V1, cache, 1)
print(dX, "\n", dW[:,:,1])
#
# """
# Convolution using tensor manipulations
# """
#
#
# def unfold(X, mode):
# """This is a tool function to unfold a 3d tensor. Doesnt acept tensors of higher dimentions
# mode = 0 - Mode of unfolding the tensor. Can have values 0,1,2 - as an input tensor has 3 dimensions.
# This approach deffers from the matematical theory, where modes start from 1.
# """
# x, y, z = X.shape
# #print('Shape of an input tensor: ', x, y, z)
# if mode == 0:
# G = np.zeros((x, y*z), dtype=float)
# #print(G.shape)
# k=0
# for x_1 in range (z):
# k=k+y
# G[:,k-y:k] = X[:,:,x_1]
# return G
#
# def conv_tensor_forward(input, W, b, stride, padding):
# cache = W, b, stride, padding
# h_filt, w_filt, d_filt, n_filt = W.shape
# h_input, w_input, d_input = input.shape
# h_out = (h_input - h_filt + 2 * padding) / stride + 1
# w_out = (w_input - w_filt + 2 * padding) / stride + 1
#
# if not h_out.is_integer() or not w_out.is_integer():
# raise Exception('Invalid output dimension!')
#
# out = np.zeros((int(h_out), int(w_out), int(n_filt)))
#
# for layer in range(n_filt):
# stepk = 0
# for i in range(int(w_out)):
# stepm = 0
# for j in range(int(h_out)):
# X = input[stepm:stepm+h_filt, stepk:stepk+w_filt, :]
# X_unfold = unfold(X,mode=0)
# W1 = W[:,:,:,layer]
# W1_unfold = unfold(W1, mode=0)
# b1 = b[:,:,:,layer]
#
# out[j, i, layer] = np.sum(X_unfold*W1_unfold)+b1
#
# stepm += stride
# stepk += stride
#
# return out
#
# #X = X.reshape((-1,7,7,3))
#
# out = conv_tensor_forward(X, W1,b1, stride=1, padding=0)
# print(out[:,:,0])