forked from dvschultz/stylegan2-ada-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 6
/
generate.py
executable file
·494 lines (418 loc) · 19.9 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import os
import subprocess
import re
from typing import List, Optional
import click
import dnnlib
import numpy as np
from numpy import linalg
import PIL.Image
import torch
import legacy
from opensimplex import OpenSimplex
# ---------------------------------------------------------------------------
class OSN():
min = -1
max = 1
def __init__(self, seed, diameter):
self.tmp = OpenSimplex(seed)
self.d = diameter
self.x = 0
self.y = 0
def get_val(self, angle):
self.xoff = valmap(np.cos(angle), -1, 1, self.x, self.x + self.d)
self.yoff = valmap(np.sin(angle), -1, 1, self.y, self.y + self.d)
return self.tmp.noise2d(self.xoff,self.yoff)
def circularloop(nf, d, seed, seeds):
r = d/2
zs = []
# hardcoding in 512, prob TODO fix needed
# latents_c = rnd.randn(1, G.input_shape[1])
if(seeds is None):
if seed:
rnd = np.random.RandomState(seed)
else:
rnd = np.random
latents_a = rnd.randn(1, 512)
latents_b = rnd.randn(1, 512)
latents_c = rnd.randn(1, 512)
elif(len(seeds) is not 3):
assert('Must choose exactly 3 seeds!')
else:
latents_a = np.random.RandomState(int(seeds[0])).randn(1, 512)
latents_b = np.random.RandomState(int(seeds[1])).randn(1, 512)
latents_c = np.random.RandomState(int(seeds[2])).randn(1, 512)
latents = (latents_a, latents_b, latents_c)
current_pos = 0.0
step = 1./nf
while(current_pos < 1.0):
zs.append(circular_interpolation(r, latents, current_pos))
current_pos += step
return zs
def circular_interpolation(radius, latents_persistent, latents_interpolate):
latents_a, latents_b, latents_c = latents_persistent
latents_axis_x = (latents_a - latents_b).flatten() / linalg.norm(latents_a - latents_b)
latents_axis_y = (latents_a - latents_c).flatten() / linalg.norm(latents_a - latents_c)
latents_x = np.sin(np.pi * 2.0 * latents_interpolate) * radius
latents_y = np.cos(np.pi * 2.0 * latents_interpolate) * radius
latents = latents_a + latents_x * latents_axis_x + latents_y * latents_axis_y
return latents
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
def size_range(s: str) -> List[int]:
'''Accept a range 'a-c' and return as a list of 2 ints.'''
return [int(v) for v in s.split('-')][::-1]
def line_interpolate(zs, steps, easing):
out = []
for i in range(len(zs)-1):
for index in range(steps):
t = index/float(steps)
if(easing == 'linear'):
out.append(zs[i+1]*t + zs[i]*(1-t))
elif (easing == 'easeInOutQuad'):
if(t < 0.5):
fr = 2 * t * t
else:
fr = (-2 * t * t) + (4 * t) - 1
out.append(zs[i+1]*fr + zs[i]*(1-fr))
elif (easing == 'bounceEaseOut'):
if (t < 4/11):
fr = 121 * t * t / 16
elif (t < 8/11):
fr = (363 / 40.0 * t * t) - (99 / 10.0 * t) + 17 / 5.0
elif t < 9/10:
fr = (4356 / 361.0 * t * t) - (35442 / 1805.0 * t) + 16061 / 1805.0
else:
fr = (54 / 5.0 * t * t) - (513 / 25.0 * t) + 268 / 25.0
out.append(zs[i+1]*fr + zs[i]*(1-fr))
elif (easing == 'circularEaseOut'):
fr = np.sqrt((2 - t) * t)
out.append(zs[i+1]*fr + zs[i]*(1-fr))
elif (easing == 'circularEaseOut2'):
fr = np.sqrt(np.sqrt((2 - t) * t))
out.append(zs[i+1]*fr + zs[i]*(1-fr))
elif(easing == 'backEaseOut'):
p = 1 - t
fr = 1 - (p * p * p - p * math.sin(p * math.pi))
out.append(zs[i+1]*fr + zs[i]*(1-fr))
return out
def noiseloop(nf, d, seed):
if seed:
np.random.RandomState(seed)
features = []
zs = []
for i in range(512):
features.append(OSN(i+seed,d))
inc = (np.pi*2)/nf
for f in range(nf):
z = np.random.randn(1, 512)
for i in range(512):
z[0,i] = features[i].get_val(inc*f)
zs.append(z)
return zs
def images(G,device,inputs,space,truncation_psi,label,noise_mode,outdir,start=None,stop=None):
if(start is not None and stop is not None):
tp = start
tp_i = (stop-start)/len(inputs)
for idx, i in enumerate(inputs):
print('Generating image for frame %d/%d ...' % (idx, len(inputs)))
if (space=='z'):
z = torch.from_numpy(i).to(device)
if(start is not None and stop is not None):
img = G(z, label, truncation_psi=tp, noise_mode=noise_mode)
tp = tp+tp_i
else:
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
else:
if len(i.shape) == 2:
i = torch.from_numpy(i).unsqueeze(0).to(device)
img = G.synthesis(i, noise_mode=noise_mode, force_fp32=True)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/frame{idx:04d}.png')
def interpolate(G,device,projected_w,seeds,random_seed,space,truncation_psi,label,frames,noise_mode,outdir,interpolation,easing,diameter,start=None,stop=None):
if(interpolation=='noiseloop' or interpolation=='circularloop'):
if seeds is not None:
print(f'Warning: interpolation type: "{interpolation}" doesn’t support set seeds.')
if(interpolation=='noiseloop'):
points = noiseloop(frames, diameter, random_seed)
elif(interpolation=='circularloop'):
points = circularloop(frames, diameter, random_seed, seeds)
else:
if projected_w is not None:
points = np.load(projected_w)['w']
else:
# get zs from seeds
points = seeds_to_zs(G,seeds)
# convert to ws
if(space=='w'):
points = zs_to_ws(G,device,label,truncation_psi,points)
# get interpolation points
if(interpolation=='linear'):
points = line_interpolate(points,frames,easing)
elif(interpolation=='slerp'):
points = slerp_interpolate(points,frames)
# generate frames
images(G,device,points,space,truncation_psi,label,noise_mode,outdir,start,stop)
def seeds_to_zs(G,seeds):
zs = []
for seed_idx, seed in enumerate(seeds):
z = np.random.RandomState(seed).randn(1, G.z_dim)
zs.append(z)
return zs
# slightly modified version of
# https://github.com/PDillis/stylegan2-fun/blob/master/run_generator.py#L399
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
'''
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
'''
v0 = v0.cpu().detach().numpy()
v1 = v1.cpu().detach().numpy()
# Copy the vectors to reuse them later
v0_copy = np.copy(v0)
v1_copy = np.copy(v1)
# Normalize the vectors to get the directions and angles
v0 = v0 / np.linalg.norm(v0)
v1 = v1 / np.linalg.norm(v1)
# Dot product with the normalized vectors (can't use np.dot in W)
dot = np.sum(v0 * v1)
# If absolute value of dot product is almost 1, vectors are ~colineal, so use lerp
if np.abs(dot) > DOT_THRESHOLD:
return lerp(t, v0_copy, v1_copy)
# Calculate initial angle between v0 and v1
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
# Angle at timestep t
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
# Finish the slerp algorithm
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0_copy + s1 * v1_copy
return torch.from_numpy(v2).to("cuda")
def slerp_interpolate(zs, steps):
out = []
for i in range(len(zs)-1):
for index in range(steps):
fraction = index/float(steps)
out.append(slerp(fraction,zs[i],zs[i+1]))
return out
def truncation_traversal(G,device,z,label,start,stop,increment,noise_mode,outdir):
count = 1
trunc = start
z = seeds_to_zs(G,z)[0]
z = torch.from_numpy(np.asarray(z)).to(device)
while trunc <= stop:
print('Generating truncation %0.2f' % trunc)
img = G(z, label, truncation_psi=trunc, noise_mode=noise_mode)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/frame{count:04d}.png')
trunc+=increment
count+=1
def valmap(value, istart, istop, ostart, ostop):
return ostart + (ostop - ostart) * ((value - istart) / (istop - istart))
def zs_to_ws(G,device,label,truncation_psi,zs):
ws = []
for z_idx, z in enumerate(zs):
z = torch.from_numpy(z).to(device)
w = G.mapping(z, label, truncation_psi=truncation_psi, truncation_cutoff=8)
ws.append(w)
return ws
#----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=num_range, help='List of random seeds')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
@click.option('--diameter', type=float, help='diameter of loops', default=100.0, show_default=True)
@click.option('--frames', type=int, help='how many frames to produce (with seeds this is frames between each step, with loops this is total length)', default=240, show_default=True)
@click.option('--fps', type=int, help='framerate for video', default=24, show_default=True)
@click.option('--increment', type=float, help='truncation increment value', default=0.01, show_default=True)
@click.option('--interpolation', type=click.Choice(['linear', 'slerp', 'noiseloop', 'circularloop']), default='linear', help='interpolation type', required=True)
@click.option('--easing',
type=click.Choice(['linear', 'easeInOutQuad', 'bounceEaseOut','circularEaseOut','circularEaseOut2']),
default='linear', help='easing method', required=True)
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
@click.option('--process', type=click.Choice(['image', 'interpolation','truncation','interpolation-truncation']), default='image', help='generation method', required=True)
@click.option('--projected-w', help='Projection result file', type=str, metavar='FILE')
@click.option('--random_seed', type=int, help='random seed value (used in noise and circular loop)', default=0, show_default=True)
@click.option('--scale-type',
type=click.Choice(['pad', 'padside', 'symm','symmside']),
default='pad', help='scaling method for --size', required=False)
@click.option('--size', type=size_range, help='size of output (in format x-y)')
@click.option('--seeds', type=num_range, help='List of random seeds')
@click.option('--space', type=click.Choice(['z', 'w']), default='z', help='latent space', required=True)
@click.option('--start', type=float, help='starting truncation value', default=0.0, show_default=True)
@click.option('--stop', type=float, help='stopping truncation value', default=1.0, show_default=True)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
def generate_images(
ctx: click.Context,
easing: str,
interpolation: str,
increment: Optional[float],
network_pkl: str,
process: str,
random_seed: Optional[int],
diameter: Optional[float],
scale_type: Optional[str],
size: Optional[List[int]],
seeds: Optional[List[int]],
space: str,
fps: Optional[int],
frames: Optional[int],
truncation_psi: float,
noise_mode: str,
outdir: str,
class_idx: Optional[int],
projected_w: Optional[str],
start: Optional[float],
stop: Optional[float],
):
"""Generate images using pretrained network pickle.
Examples:
\b
# Generate curated MetFaces images without truncation (Fig.10 left)
python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl
\b
# Generate uncurated MetFaces images with truncation (Fig.12 upper left)
python generate.py --outdir=out --trunc=0.7 --seeds=600-605 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl
\b
# Generate class conditional CIFAR-10 images (Fig.17 left, Car)
python generate.py --outdir=out --seeds=0-35 --class=1 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/cifar10.pkl
\b
# Render an image from projected W
python generate.py --outdir=out --projected_w=projected_w.npz \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl
"""
# custom size code from https://github.com/eps696/stylegan2ada/blob/master/src/_genSGAN2.py
if(size):
print('render custom size: ',size)
print('padding method:', scale_type )
custom = True
else:
custom = False
G_kwargs = dnnlib.EasyDict()
G_kwargs.size = size
G_kwargs.scale_type = scale_type
# mask/blend latents with external latmask or by splitting the frame
latmask = False #temp
if latmask is None:
nHW = [int(s) for s in a.nXY.split('-')][::-1]
assert len(nHW)==2, ' Wrong count nXY: %d (must be 2)' % len(nHW)
n_mult = nHW[0] * nHW[1]
# if a.verbose is True and n_mult > 1: print(' Latent blending w/split frame %d x %d' % (nHW[1], nHW[0]))
lmask = np.tile(np.asarray([[[[1]]]]), (1,n_mult,1,1))
Gs_kwargs.countHW = nHW
Gs_kwargs.splitfine = a.splitfine
lmask = torch.from_numpy(lmask).to(device)
# else:
# if a.verbose is True: print(' Latent blending with mask', a.latmask)
# n_mult = 2
# if os.path.isfile(a.latmask): # single file
# lmask = np.asarray([[img_read(a.latmask)[:,:,0] / 255.]]) # [h,w]
# elif os.path.isdir(a.latmask): # directory with frame sequence
# lmask = np.asarray([[img_read(f)[:,:,0] / 255. for f in img_list(a.latmask)]]) # [h,w]
# else:
# print(' !! Blending mask not found:', a.latmask); exit(1)
# lmask = np.concatenate((lmask, 1 - lmask), 1) # [frm,2,h,w]
# lmask = torch.from_numpy(lmask).to(device)
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as f:
# G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
G = legacy.load_network_pkl(f, custom=custom, **G_kwargs)['G_ema'].to(device) # type: ignore
os.makedirs(outdir, exist_ok=True)
# Synthesize the result of a W projection.
if (process=='image') and projected_w is not None:
if seeds is not None:
print ('Warning: --seeds is ignored when using --projected-w')
print(f'Generating images from projected W "{projected_w}"')
ws = np.load(projected_w)['w']
ws = torch.tensor(ws, device=device) # pylint: disable=not-callable
assert ws.shape[1:] == (G.num_ws, G.w_dim)
for idx, w in enumerate(ws):
img = G.synthesis(w.unsqueeze(0), noise_mode=noise_mode)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/proj{idx:02d}.png')
return
# Labels.
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
ctx.fail('Must specify class label with --class when using a conditional network')
label[:, class_idx] = 1
else:
if class_idx is not None:
print ('warn: --class=lbl ignored when running on an unconditional network')
if(process=='image'):
if seeds is None:
ctx.fail('--seeds option is required when not using --projected-w')
# Generate images.
for seed_idx, seed in enumerate(seeds):
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png')
elif(process=='interpolation' or process=='interpolation-truncation'):
# create path for frames
dirpath = os.path.join(outdir,'frames')
os.makedirs(dirpath, exist_ok=True)
# autogenerate video name: not great!
if seeds is not None:
seedstr = '_'.join([str(seed) for seed in seeds])
vidname = f'{process}-{interpolation}-seeds_{seedstr}-{fps}fps'
elif(interpolation=='noiseloop' or 'circularloop'):
vidname = f'{process}-{interpolation}-{diameter}dia-seed_{random_seed}-{fps}fps'
if process=='interpolation-truncation':
interpolate(G,device,projected_w,seeds,random_seed,space,truncation_psi,label,frames,noise_mode,dirpath,interpolation,easing,diameter,start,stop)
else:
interpolate(G,device,projected_w,seeds,random_seed,space,truncation_psi,label,frames,noise_mode,dirpath,interpolation,easing,diameter)
# convert to video
cmd=f'ffmpeg -y -r {fps} -i {dirpath}/frame%04d.png -vcodec libx264 -pix_fmt yuv420p {outdir}/{vidname}.mp4'
subprocess.call(cmd, shell=True)
elif(process=='truncation'):
if seeds is None or (len(seeds)>1):
ctx.fail('truncation requires a single seed value')
# create path for frames
dirpath = os.path.join(outdir,'frames')
os.makedirs(dirpath, exist_ok=True)
#vidname
seed = seeds[0]
vidname = f'{process}-seed_{seed}-start_{start}-stop_{stop}-inc_{increment}-{fps}fps'
# generate frames
truncation_traversal(G,device,seeds,label,start,stop,increment,noise_mode,dirpath)
# convert to video
cmd=f'ffmpeg -y -r {fps} -i {dirpath}/frame%04d.png -vcodec libx264 -pix_fmt yuv420p {outdir}/{vidname}.mp4'
subprocess.call(cmd, shell=True)
#----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------