forked from dvschultz/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 15
/
style_mixing.py
executable file
·120 lines (95 loc) · 5.12 KB
/
style_mixing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate style mixing image matrix using pretrained network pickle."""
import argparse
import os
import pickle
import re
import numpy as np
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
#----------------------------------------------------------------------------
def style_mixing_example(network_pkl, row_seeds, col_seeds, truncation_psi, col_styles, outdir, minibatch_size=4):
tflib.init_tf()
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
w_avg = Gs.get_var('dlatent_avg') # [component]
Gs_syn_kwargs = {
'output_transform': dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False,
'minibatch_size': minibatch_size
}
print('Generating W vectors...')
all_seeds = list(set(row_seeds + col_seeds))
all_z = np.stack([np.random.RandomState(seed).randn(*Gs.input_shape[1:]) for seed in all_seeds]) # [minibatch, component]
all_w = Gs.components.mapping.run(all_z, None) # [minibatch, layer, component]
all_w = w_avg + (all_w - w_avg) * truncation_psi # [minibatch, layer, component]
w_dict = {seed: w for seed, w in zip(all_seeds, list(all_w))} # [layer, component]
print('Generating images...')
all_images = Gs.components.synthesis.run(all_w, **Gs_syn_kwargs) # [minibatch, height, width, channel]
image_dict = {(seed, seed): image for seed, image in zip(all_seeds, list(all_images))}
print('Generating style-mixed images...')
for row_seed in row_seeds:
for col_seed in col_seeds:
w = w_dict[row_seed].copy()
w[col_styles] = w_dict[col_seed][col_styles]
image = Gs.components.synthesis.run(w[np.newaxis], **Gs_syn_kwargs)[0]
image_dict[(row_seed, col_seed)] = image
print('Saving images...')
os.makedirs(outdir, exist_ok=True)
for (row_seed, col_seed), image in image_dict.items():
PIL.Image.fromarray(image, 'RGB').save(f'{outdir}/{row_seed}-{col_seed}.png')
print('Saving image grid...')
_N, _C, H, W = Gs.output_shape
canvas = PIL.Image.new('RGB', (W * (len(col_seeds) + 1), H * (len(row_seeds) + 1)), 'black')
for row_idx, row_seed in enumerate([None] + row_seeds):
for col_idx, col_seed in enumerate([None] + col_seeds):
if row_seed is None and col_seed is None:
continue
key = (row_seed, col_seed)
if row_seed is None:
key = (col_seed, col_seed)
if col_seed is None:
key = (row_seed, row_seed)
canvas.paste(PIL.Image.fromarray(image_dict[key], 'RGB'), (W * col_idx, H * row_idx))
canvas.save(f'{outdir}/grid.png')
#----------------------------------------------------------------------------
def _parse_num_range(s):
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
_examples = '''examples:
python %(prog)s --outdir=out --trunc=1 --rows=85,100,75,458,1500 --cols=55,821,1789,293 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metfaces.pkl
'''
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description='Generate style mixing image matrix using pretrained network pickle.',
epilog=_examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser.add_argument('--rows', dest='row_seeds', type=_parse_num_range, help='Random seeds to use for image rows', required=True)
parser.add_argument('--cols', dest='col_seeds', type=_parse_num_range, help='Random seeds to use for image columns', required=True)
parser.add_argument('--styles', dest='col_styles', type=_parse_num_range, help='Style layer range (default: %(default)s)', default='0-6')
parser.add_argument('--trunc', dest='truncation_psi', type=float, help='Truncation psi (default: %(default)s)', default=0.5)
parser.add_argument('--outdir', help='Where to save the output images', required=True, metavar='DIR')
args = parser.parse_args()
style_mixing_example(**vars(args))
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------