From 96718aaa108bb55a30e6510215a617ac4549f888 Mon Sep 17 00:00:00 2001 From: Sean Anderson Date: Wed, 18 Oct 2023 14:47:02 -0700 Subject: [PATCH] Regenerate readme --- README.Rmd | 7 ++----- README.md | 32 ++++++++++++-------------------- 2 files changed, 14 insertions(+), 25 deletions(-) diff --git a/README.Rmd b/README.Rmd index d6b905193..457830c43 100644 --- a/README.Rmd +++ b/README.Rmd @@ -14,7 +14,7 @@ knitr::opts_chunk$set( comment = "#>", fig.path = "man/figures/README-", out.width = "50%", - cache = TRUE, + cache = FALSE, autodep = TRUE, dpi = 72 ) @@ -131,7 +131,7 @@ We start by creating a mesh object that contains matrices to apply the SPDE appr mesh <- make_mesh(pcod, xy_cols = c("X", "Y"), cutoff = 10) ``` -Here, `cutoff` defines the minimum allowed distance between points in the units of `X` and `Y` (km). Alternatively, we could have created any mesh via the INLA package and supplied it to `make_mesh()`. +Here, `cutoff` defines the minimum allowed distance between points in the units of `X` and `Y` (km). Alternatively, we could have created any mesh via the fmesher or INLA packages and supplied it to `make_mesh()`. We can inspect our mesh object with the associated plotting method `plot(mesh)`. Fit a spatial model with a smoother for depth: @@ -468,9 +468,6 @@ m_cv <- sdmTMB_cv( ) # Sum of log likelihoods of left-out data: m_cv$sum_loglik -# Expected log pointwise predictive density from left-out data: -# (average likelihood density) -m_cv$elpd ``` See [`?sdmTMB_cv`](https://pbs-assess.github.io/sdmTMB/reference/sdmTMB_cv.html) for more details. diff --git a/README.md b/README.md index 41473f784..c2c96396e 100644 --- a/README.md +++ b/README.md @@ -217,8 +217,8 @@ mesh <- make_mesh(pcod, xy_cols = c("X", "Y"), cutoff = 10) Here, `cutoff` defines the minimum allowed distance between points in the units of `X` and `Y` (km). Alternatively, we could have created any -mesh via the INLA package and supplied it to `make_mesh()`. We can -inspect our mesh object with the associated plotting method +mesh via the fmesher or INLA packages and supplied it to `make_mesh()`. +We can inspect our mesh object with the associated plotting method `plot(mesh)`. Fit a spatial model with a smoother for depth: @@ -239,13 +239,13 @@ Print the model fit: fit #> Spatial model fit by ML ['sdmTMB'] #> Formula: density ~ s(depth) -#> Mesh: mesh +#> Mesh: mesh (isotropic covariance) #> Data: pcod #> Family: tweedie(link = 'log') #> #> coef.est coef.se #> (Intercept) 2.37 0.21 -#> sdepth 6.17 25.17 +#> sdepth 0.62 2.53 #> #> Smooth terms: #> Std. Dev. @@ -253,7 +253,7 @@ fit #> #> Dispersion parameter: 12.69 #> Tweedie p: 1.58 -#> Matern range: 16.39 +#> Matérn range: 16.39 #> Spatial SD: 1.86 #> ML criterion at convergence: 6402.136 #> @@ -280,11 +280,11 @@ tidy(fit, conf.int = TRUE) tidy(fit, effects = "ran_pars", conf.int = TRUE) #> # A tibble: 4 × 5 #> term estimate std.error conf.low conf.high -#> -#> 1 range 16.4 NA 9.60 28.0 -#> 2 phi 12.7 NA 11.9 13.5 -#> 3 sigma_O 1.86 NA 1.48 2.34 -#> 4 tweedie_p 1.58 NA 1.56 1.60 +#> +#> 1 range 16.4 4.47 9.60 28.0 +#> 2 phi 12.7 0.406 11.9 13.5 +#> 3 sigma_O 1.86 0.218 1.48 2.34 +#> 4 tweedie_p 1.58 0.00998 1.56 1.60 ``` Run some basic sanity checks on our model: @@ -333,7 +333,7 @@ head(p) #> X Y depth est est_non_rf est_rf omega_s #> #> 1 456 5636 347. -3.06 -3.08 0.0172 0.0172 - #> 2 458 5636 223. 2.03 1.99 0.0459 0.0459 + #> 2 458 5636 223. 2.03 1.99 0.0460 0.0460 #> 3 460 5636 204. 2.89 2.82 0.0747 0.0747 ``` r @@ -477,10 +477,6 @@ grid_yrs <- replicate_df(qcs_grid, "year", unique(pcod$year)) grid_yrs$year_scaled <- (grid_yrs$year - mean(pcod$year)) / sd(pcod$year) p <- predict(fit, newdata = grid_yrs) %>% subset(year == 2011) # any year -#> Warning: The installed version of sdmTMB is newer than the version that was used to fit -#> this model. It is possible new parameters have been added to the TMB model -#> since you fit this model and that prediction will fail. We recommend you fit -#> and predict from an sdmTMB model with the same version. ggplot(p, aes(X, Y, fill = zeta_s_year_scaled)) + geom_raster() + scale_fill_gradient2() ``` @@ -665,11 +661,7 @@ m_cv <- sdmTMB_cv( #> Set a parallel `future::plan()` to use parallel processing. # Sum of log likelihoods of left-out data: m_cv$sum_loglik -#> [1] -7122.779 -# Expected log pointwise predictive density from left-out data: -# (average likelihood density) -m_cv$elpd -#> [1] -1.005114 +#> [1] -6756.28 ``` See