forked from holmescao/iGrow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
liaoyang_economic.py
201 lines (156 loc) · 7.27 KB
/
liaoyang_economic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import datetime
import argparse
import os
import pandas as pd
import numpy as np
import warnings
from scipy import stats
from utils.common import mkdir
warnings.filterwarnings("ignore")
os.environ['NLS_LANG'] = 'AMERICAN_AMERICA.AL32UTF8'
def CalculateCost(Table2_df, harvest_file_dir):
harvest_price_dir = os.path.join(harvest_file_dir, 'overall_cost.xlsx')
# energy
energy_df = pd.read_excel(harvest_price_dir, sheet_name='Energy')
ctrl_energy = energy_df.values[-1, :2]
expr_energy = energy_df.values[-1, 2:]
record = get_record(ctrl_energy, expr_energy, col='Energy Cost', minus='-')
Table2_df = add_to_table(Table2_df, record, 0)
# labour
labour_df = pd.read_excel(harvest_price_dir, sheet_name='Labour')
ctrl_labour = labour_df.values[-1, :2]
expr_labour = labour_df.values[-1, 2:]
record = get_record(ctrl_labour, expr_labour, col='Crop Maintenance Cost')
Table2_df = add_to_table(Table2_df, record, 1)
# fixed
fixed_df = pd.read_excel(harvest_price_dir, sheet_name='Fixed')
ctrl_fiexd = fixed_df.values[-1, :2]
expr_fiexd = fixed_df.values[-1, 2:]
record = get_record(ctrl_fiexd, expr_fiexd, col='Equipment Emortization')
Table2_df = add_to_table(Table2_df, record, 2)
# total cost
ctrl_cost = ctrl_energy+ctrl_labour+ctrl_fiexd
expr_cost = expr_energy+expr_labour+expr_fiexd
record = get_record(ctrl_cost, expr_cost, col='Total Cost')
Table2_df = add_to_table(Table2_df, record, 3)
return ctrl_cost, expr_cost
def CalculateHarvest(Table2_df, harvest_file_dir):
m2_to_Mu = 667
# Price
harvest_price_dir = os.path.join(harvest_file_dir, 'price.csv')
df = pd.read_csv(harvest_price_dir)
ctrl_price = df.values[:, 1:3]
expr_price = df.values[:, 3:]
expr_price = expr_price.astype(np.float32) * args.rmb2euro
ctrl_price = ctrl_price.astype(np.float32) * args.rmb2euro
expr_price[expr_price == 0] = np.nan
ctrl_price[ctrl_price == 0] = np.nan
ctrl_avg = np.nanmean(ctrl_price, axis=0)
expr_avg = np.nanmean(expr_price, axis=0)
record = get_record(ctrl_avg, expr_avg, col='Price')
Table2_df = add_to_table(Table2_df, record, 4)
expr_harvest, ctrl_harvest = get_harvest(args)
# Production
ctrl_prod = ctrl_harvest['production'][-1, :]*m2_to_Mu
expr_prod = expr_harvest['production'][-1, :]*m2_to_Mu
record = get_record(ctrl_prod, expr_prod, col='Production')
Table2_df = add_to_table(Table2_df, record, 5)
# gains
ctrl_gains = ctrl_harvest['gains'][-1, :]*m2_to_Mu
expr_gains = expr_harvest['gains'][-1, :]*m2_to_Mu
record = get_record(ctrl_gains, expr_gains, col='Gains')
Table2_df = add_to_table(Table2_df, record, 6)
return ctrl_gains, expr_gains
def CalculateBalance(Table2_df, ctrl_economic, expr_economic):
ctrl_balance = ctrl_economic['gains']-ctrl_economic['cost']
expr_balance = expr_economic['gains']-expr_economic['cost']
record = get_record(ctrl_balance, expr_balance, col='Net Profit')
Table2_df = add_to_table(Table2_df, record, 7)
# save
save_path = args.base_tmp_folder + '/table2/'
mkdir(save_path)
Table2_df.to_csv(save_path+'Overall_economic.csv', index=False)
def Table2(args):
print("=============Table2===============")
# file
harvest_file = os.path.join(args.base_input_path, args.harvest_files)
with open(harvest_file, 'r') as f:
harvest_file_dir = f.readlines()
harvest_file_dir = harvest_file_dir[0].replace("\n", '')
columns = ['Economic',
'Control Group',
'Experimental Group',
'RI*',
'T-test']
Table2_df = pd.DataFrame(np.full((8, 5), np.nan), columns=columns)
ctrl_cost, expr_cost = CalculateCost(Table2_df, harvest_file_dir)
ctrl_gains, expr_gains = CalculateHarvest(Table2_df, harvest_file_dir)
ctrl_economic = {"cost": ctrl_cost,
"gains": ctrl_gains}
expr_economic = {"cost": expr_cost,
"gains": expr_gains}
CalculateBalance(Table2_df, ctrl_economic, expr_economic)
def add_to_table(Table2_df, record, rowIdx):
columns = Table2_df.columns
for i in range(len(record.keys())):
Table2_df[columns[i]].iloc[rowIdx] = record[i]
return Table2_df
def get_record(ctrl, expr, col, minus=''):
ctrl_mean = np.mean(ctrl)
expr_mean = np.mean(expr)
ctrl_std = np.std(ctrl)
expr_std = np.std(expr)
t, p_ = stats.ttest_1samp(expr, ctrl.mean())
record = {0: col,
1: '+-'.join([str(np.around(ctrl_mean, 2)), str(np.around(ctrl_std, 2))]),
2: "+-".join([str(np.around(expr_mean, 2)), str(np.around(expr_std, 2))]),
3: f"{minus}{np.around(abs(ctrl_mean-expr_mean) / ctrl_mean*100, 2)} %",
4: str(p_)}
return record
def get_harvest(args):
harvest_file = os.path.join(args.base_input_path, args.harvest_files)
with open(harvest_file, 'r') as f:
harvest_file_dir = f.readlines()
harvest_file_dir = harvest_file_dir[0].replace("\n", '')
expr_harvest, ctrl_harvest = harvest_analysis(args=args,
harvest_dir=harvest_file_dir)
return expr_harvest, ctrl_harvest
def harvest_analysis(args, harvest_dir):
startDate = datetime.datetime.strptime(args.startDate, "%Y-%m-%d")
endDate = datetime.datetime.strptime(args.endDate, "%Y-%m-%d")
days = (endDate-startDate).days + 1
expr_prod = np.zeros((days, len(args.experiment_gh)))
ctrl_prod = np.zeros((days, len(args.control_group)))
expr_gains = np.zeros((days, len(args.experiment_gh)))
ctrl_gains = np.zeros((days, len(args.control_group)))
m2_to_Mu = 667
production = pd.read_csv(harvest_dir + 'production.csv')
production = production.values[:, 1:] / m2_to_Mu
Income = pd.read_csv(harvest_dir + 'Income.csv')
Income = Income.values[:, 1:] / m2_to_Mu * args.rmb2euro
ctrl_prod[-len(production):, :] = np.nancumsum(production[:, :2], axis=0)
expr_prod[-len(production):, :] = np.nancumsum(production[:, 2:], axis=0)
ctrl_gains[-len(Income):, :] = np.nancumsum(Income[:, :2], axis=0)
expr_gains[-len(Income):, :] = np.nancumsum(Income[:, 2:], axis=0)
expr_harvest = {"production": expr_prod,
"gains": expr_gains}
ctrl_harvest = {"production": ctrl_prod,
"gains": ctrl_gains}
return expr_harvest, ctrl_harvest
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--startDate', default="2020-03-15",
help='start date of planting.')
parser.add_argument('--endDate', default="2020-07-13",
help='end date of planting.')
parser.add_argument('--control_group', type=list, default=[1, 2],
help='ids of all green house.')
parser.add_argument('--experiment_gh', type=list, default=[3, 4, 5, 6, 7],
help='ids of all green house.')
parser.add_argument('--rmb2euro', type=float, default=0.1276,
help="rate of rmb to euro")
parser.add_argument("--base_input_path", default="./input", type=str)
parser.add_argument("--base_tmp_folder", default="./result", type=str)
parser.add_argument("--harvest_files", default='harvest.txt', type=str)
args = parser.parse_args()
Table2(args)