forked from kaonashi-tyc/zi2zi
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathinfer_by_text.py
86 lines (67 loc) · 3.65 KB
/
infer_by_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
import argparse
from io import BytesIO
import tensorflow as tf
from PIL import ImageFont
from model.dataset import get_batch_iter
from model.preprocessing_helper import save_imgs, draw_paired_image, CHAR_SIZE, \
CANVAS_SIZE, draw_single_char_by_font, EMBEDDING_DIM
from model.unet import UNet
from model.utils import merge, scale_back
"""
People are made to have fun and be 中二 sometimes
--Bored Yan LeCun
"""
parser = argparse.ArgumentParser(description='Inference for unseen data')
parser.add_argument('--experiment_id', dest='experiment_id', type=int, default=0,
help='sequence id for the experiments you prepare to run')
parser.add_argument('--model_dir', dest='model_dir', default="experiments/checkpoint/experiment_0",
help='directory that saves the model checkpoints')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='number of examples in batch')
parser.add_argument('--text', type=str, default="人生是条马尔可夫链", help='the source images for inference')
parser.add_argument('--embedding_id', type=int, default=67, help='embeddings involved')
parser.add_argument('--embedding_dim', type=int, default=EMBEDDING_DIM, help="dimension for embedding")
parser.add_argument('--save_dir', default='save_dir', type=str, help='path to save inferred images')
parser.add_argument('--inst_norm', dest='inst_norm', type=int, default=1,
help='use conditional instance normalization in your model')
parser.add_argument('--char_size', dest='char_size', type=int, default=CHAR_SIZE, help='character size')
parser.add_argument('--src_font', dest='src_font', default='data/raw_fonts/SimSun.ttf', help='path of the source font')
parser.add_argument('--canvas_size', dest='canvas_size', type=int, default=CANVAS_SIZE, help='canvas size')
args = parser.parse_args()
def main(_):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
src_font = ImageFont.truetype(args.src_font, size=args.char_size)
with tf.Session(config=config) as sess:
model = UNet(batch_size=args.batch_size, input_width=args.canvas_size, output_width=args.canvas_size,
experiment_id=args.experiment_id, embedding_dim=args.embedding_dim)
model.register_session(sess)
model.build_model(is_training=False, inst_norm=args.inst_norm)
model.load_model(args.model_dir)
count = 0
batch_buffer = list()
examples = []
for ch in list(args.text):
src_img = draw_single_char_by_font(ch, src_font, args.canvas_size, args.char_size)
paired_img = draw_paired_image(src_img, src_img, args.canvas_size)
buffered = BytesIO()
paired_img.save(buffered, format="JPEG")
examples.append((args.embedding_id, buffered.getvalue()))
batch_iter = get_batch_iter(examples, args.batch_size, augment=False)
for _, images in batch_iter:
# inject specific embedding style here
labels = [args.embedding_id] * len(images)
fake_imgs = model.generate_fake_samples(images, labels)[0]
merged_fake_images = merge(scale_back(fake_imgs), [-1, 1]) # scale 0-1
batch_buffer.append(merged_fake_images)
if len(batch_buffer) == 10:
save_imgs(batch_buffer, count, args.save_dir)
batch_buffer = list()
count += 1
if batch_buffer:
# last batch
save_imgs(batch_buffer, count, args.save_dir)
if __name__ == '__main__':
tf.app.run()