NTM-Lasagne is a library to create Neural Turing Machines (NTMs) in Theano using the Lasagne library. If you want to learn more about NTMs, check out our blog post.
This library features:
- A Neural Turing Machine layer
NTMLayer
, where all its components (controller, heads, memory) are fully customizable. - Two types of controllers: a feed-forward
DenseController
and a "vanilla" recurrentRecurrentController
. - A dashboard to visualize the inner mechanism of the NTM.
- Generators to sample examples from algorithmic tasks.
This library is compatible with Python 2.7.8, and may be partly compatible with Python 3.x. NTM-Lasagne requires the bleeding-edge versions of Lasagne and Theano. Check the Lasagne installation instructions for details, or install them with pip install -r requirements.txt
.
To install this library, clone this repository and then run the setup.py
script.
git clone https://github.com/snipsco/ntm-lasagne.git
cd ntm-lasagne/
pip install -r requirements.txt
python setup.py install
Here is minimal example to define a NTMLayer
# Neural Turing Machine Layer
memory = Memory((128, 20), memory_init=lasagne.init.Constant(1e-6),
learn_init=False, name='memory')
controller = DenseController(l_input, memory_shape=(128, 20),
num_units=100, num_reads=1,
nonlinearity=lasagne.nonlinearities.rectify,
name='controller')
heads = [
WriteHead(controller, num_shifts=3, memory_shape=(128, 20),
nonlinearity_key=lasagne.nonlinearities.rectify,
nonlinearity_add=lasagne.nonlinearities.rectify,
learn_init=False, name='write'),
ReadHead(controller, num_shifts=3, memory_shape=(128, 20),
nonlinearity_key=lasagne.nonlinearities.rectify,
learn_init=False, name='read')
]
l_ntm = NTMLayer(l_input, memory=memory, controller=controller, heads=heads)
For more detailed examples, check the examples
folder. If you would like to train a Neural Turing Machine on one of these examples, simply run the corresponding script, like
PYTHONPATH=. python examples/task-copy.py
and be patient while Theano compiles the model ;-). Note: unlucky initialisation of the parameters might lead to a diverging solution witness by NaNs.