forked from jerryscript-project/jerryscript
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlog.c
199 lines (192 loc) · 5.66 KB
/
log.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/* Copyright 2016 Samsung Electronics Co., Ltd.
* Copyright 2016 University of Szeged
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)e_log.c 1.3 95/01/18
*/
#include "jerry-libm-internal.h"
/* log(x)
* Return the logrithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#define zero 0.0
#define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
#define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
#define two54 1.80143985094819840000e+16 /* 43500000 00000000 */
#define Lg1 6.666666666666735130e-01 /* 3FE55555 55555593 */
#define Lg2 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
#define Lg3 2.857142874366239149e-01 /* 3FD24924 94229359 */
#define Lg4 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
#define Lg5 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
#define Lg6 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
#define Lg7 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
double
log (double x)
{
double hfsq, f, s, z, R, w, t1, t2, dk;
int k, hx, i, j;
unsigned lx;
hx = __HI (x); /* high word of x */
lx = __LO (x); /* low word of x */
k = 0;
if (hx < 0x00100000) /* x < 2**-1022 */
{
if (((hx & 0x7fffffff) | lx) == 0) /* log(+-0) = -inf */
{
return -two54 / zero;
}
if (hx < 0) /* log(-#) = NaN */
{
return (x - x) / zero;
}
k -= 54;
x *= two54; /* subnormal number, scale up x */
hx = __HI (x); /* high word of x */
}
if (hx >= 0x7ff00000)
{
return x + x;
}
k += (hx >> 20) - 1023;
hx &= 0x000fffff;
i = (hx + 0x95f64) & 0x100000;
__HI (x) = hx | (i ^ 0x3ff00000); /* normalize x or x / 2 */
k += (i >> 20);
f = x - 1.0;
if ((0x000fffff & (2 + hx)) < 3) /* |f| < 2**-20 */
{
if (f == zero)
{
if (k == 0)
{
return zero;
}
else
{
dk = (double) k;
return dk * ln2_hi + dk * ln2_lo;
}
}
R = f * f * (0.5 - 0.33333333333333333 * f);
if (k == 0)
{
return f - R;
}
else
{
dk = (double) k;
return dk * ln2_hi - ((R - dk * ln2_lo) - f);
}
}
s = f / (2.0 + f);
dk = (double) k;
z = s * s;
i = hx - 0x6147a;
w = z * z;
j = 0x6b851 - hx;
t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
i |= j;
R = t2 + t1;
if (i > 0)
{
hfsq = 0.5 * f * f;
if (k == 0)
{
return f - (hfsq - s * (hfsq + R));
}
else
{
return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
}
}
else
{
if (k == 0)
{
return f - s * (f - R);
}
else
{
return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
}
}
} /* log */
#undef zero
#undef ln2_hi
#undef ln2_lo
#undef two54
#undef Lg1
#undef Lg2
#undef Lg3
#undef Lg4
#undef Lg5
#undef Lg6
#undef Lg7