-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrepresent.py
145 lines (114 loc) · 4.38 KB
/
represent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import sys
import argparse
import numpy as np
import pandas as pd
import cv2
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
import torch.nn.functional as TF
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from pytvision.transforms.aumentation import ObjectImageMetadataTransform
from pytvision.transforms import transforms as mtrans
sys.path.append('../')
from torchlib.transforms import functional as F
from torchlib.datasets.fersynthetic import SyntheticFaceDataset
from torchlib.datasets.factory import FactoryDataset
from torchlib.datasets.datasets import Dataset
from torchlib.datasets.fersynthetic import SyntheticFaceDataset
from torchlib.attentionnet import AttentionNeuralNet
from aug import get_transforms_aug, get_transforms_det
# METRICS
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
import sklearn.metrics as metrics
from argparse import ArgumentParser
def arg_parser():
"""Arg parser"""
parser = ArgumentParser()
parser.add_argument('--project', metavar='DIR', help='path to projects')
parser.add_argument('--projectname', metavar='DIR', help='name projects')
parser.add_argument('--pathdataset', metavar='DIR', help='path to dataset')
parser.add_argument('--namedataset', metavar='S', help='name to dataset')
parser.add_argument('--pathnameout', metavar='DIR', help='path to out dataset')
parser.add_argument('--filename', metavar='S', help='name of the file output')
parser.add_argument('--model', metavar='S', help='filename model')
return parser
def main():
parser = arg_parser();
args = parser.parse_args();
# Configuration
project = args.project
projectname = args.projectname
pathnamedataset = args.pathdataset
pathnamemodel = args.model
pathproject = os.path.join( project, projectname )
pathnameout = args.pathnameout
filename = args.filename
namedataset = args.namedataset
no_cuda=False
parallel=False
gpu=0
seed=1
imagesize=128
batch_size=100
idenselect=[]
# experiments
experiments = [
{ 'name': namedataset, 'subset': FactoryDataset.training, 'real': True },
{ 'name': namedataset, 'subset': FactoryDataset.validation, 'real': True },
]
# Load models
print('>> Load model ...')
network = AttentionNeuralNet(
patchproject=project,
nameproject=projectname,
no_cuda=no_cuda,
parallel=parallel,
seed=seed,
gpu=gpu,
)
cudnn.benchmark = True
# load model
if network.load( pathnamemodel ) is not True:
print('>>Error!!! load model')
assert(False)
size_input = network.size_input
for i, experiment in enumerate(experiments):
name_dataset = experiment['name']
subset = experiment['subset']
breal = experiment['real']
dataset = []
# real dataset
dataset = Dataset(
data=FactoryDataset.factory(
pathname=pathnamedataset,
name=namedataset,
subset=subset,
idenselect=idenselect,
download=True
),
num_channels=3,
transform=get_transforms_det( imagesize ),
)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=10 )
print(breal)
print(subset)
#print(dataloader.dataset.data.classes)
print(len(dataset))
print(len(dataloader))
# representation
Y_labs, Y_lab_hats, Zs = network.representation( dataloader, breal )
print(Y_lab_hats.shape, Zs.shape, Y_labs.shape)
reppathname = os.path.join( pathproject, 'rep_{}_{}_{}_{}.pth'.format(projectname, namedataset, subset, 'real' if breal else 'no_real' ) )
torch.save( { 'Yh':Y_lab_hats, 'Z':Zs, 'Y':Y_labs }, reppathname )
print( 'save representation ...' )
print('DONE!!!')
if __name__ == '__main__':
main()