-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_sign.py
188 lines (147 loc) · 5.2 KB
/
train_sign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
try:
import cluster_setup
except ImportError:
pass
import os
import sys
import time
import math
import argparse
import json
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.keras import layers, optimizers, datasets
import sklearn.metrics
import utils
from capsule.capsule_network import CapsNet
from capsule.sign_capsule_network import SignCapsNet
from capsule.utils import margin_loss
from data.sign import create_sign_data
#
# Hyperparameters and cmd args
#
# Learning hyperparameters
argparser = argparse.ArgumentParser(description="Show limitations of capsule networks")
argparser.add_argument("--batch_size", default=64, type=int,
help="Batch size")
argparser.add_argument("--epochs", default=50, type=int,
help="Defines the number of epochs to train the network")
argparser.add_argument("--enable_tf_function", default=True, type=bool,
help="Enable tf.function for faster execution")
argparser.add_argument("--use_bias", default=False, type=bool,
help="Add a bias term to the preactivation")
argparser.add_argument("--logging", default=False, type=bool,
help="Detailed logging")
argparser.add_argument("--learning_rate", default=0.0001, type=float,
help="Learning rate of adam")
# Routing properties
argparser.add_argument("--routing", default="rba",
help="rba, em")
# Dataset properties
argparser.add_argument("--dataset_size", default=4096, type=int,
help="Size of training set")
args = argparser.parse_args()
def compute_loss(logits, y):
""" The loss is the sum of the margin loss and the reconstruction loss
as defined in [2], no reconstruciton loss for lines
"""
# Calculate margin loss
loss = margin_loss(logits, tf.one_hot(y, 2), down_weighting=1.0)
return tf.reduce_mean(loss)
def compute_accuracy(logits, labels):
predictions = tf.cast(tf.argmax(tf.nn.softmax(logits), axis=1), tf.int32)
return tf.reduce_mean(tf.cast(tf.equal(predictions, labels), tf.float32))
def train(train_ds, test_ds, layers, use_bias):
""" Train capsule networks mirrored on multiple gpu
"""
# Initialize
model = SignCapsNet(routing=args.routing, layers=layers, use_bias=use_bias)
optimizer = optimizers.Adam(learning_rate=args.learning_rate)
# Function for a single training step
def train_step(inputs):
x, y = inputs
with tf.GradientTape() as tape:
logits = model(x, y)
loss = compute_loss(logits, y)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
acc = compute_accuracy(logits, y)
return loss, acc
def test_step(inputs):
x, y = inputs
logits = model(x, y)
acc = compute_accuracy(logits, y)
# Ensure correctness
tf.debugging.check_numerics(logits, message="Found nan in logits.")
tf.debugging.check_numerics(acc, message="Found nan in acc.")
tf.debugging.check_numerics(x, message="Found nan in x.")
return acc
if args.enable_tf_function:
train_step = tf.function(train_step)
test_step = tf.function(test_step)
########################################
# Training
########################################
step = 0
for epoch in range(args.epochs):
for data in train_ds:
loss, acc = train_step(data)
# Logging
if args.logging:
print("TRAIN | epoch %d: acc=%.2f, loss=%.6f" %
(epoch, acc, loss),
flush=True)
########################################
# Evaluate accuracy for all datapoints
########################################
acc = [test_step(data) for data in test_ds]
return np.mean(acc)
#
# M A I N
#
def main():
executions = []
for num_hidden_layers in [4,3,2,1]:
for num_caps in [30,25,20,15,10]:
for caps_dim in [18,16,14,12,10]:
num_runs = 3
acc_runs = []
for run in range(num_runs):
# Load data
train_ds = create_sign_data(
batch_size = args.batch_size,
dataset_size = args.dataset_size)
# Create architecture
layers = [(num_caps, caps_dim) for _ in range(num_hidden_layers)]
# Train network
acc = train(
train_ds,
train_ds,
layers=layers,
use_bias=args.use_bias)
acc_runs.append(acc)
# Evaluate solution
acc_mean=np.mean(acc_runs)
acc_std=np.std(acc_runs)
executions.append(acc_mean)
solved = bool(acc_mean > 0.6)
print("num_layers=%d, num_caps=%d, caps_dim=%d | acc=%.3f(std=%.3f) | solved = %s" %
(num_hidden_layers+1, num_caps, caps_dim, acc_mean, acc_std, solved), flush=True)
#
# Log results
#
print("\n==========================", flush=True)
print("Accuracy | Num solved", flush=True)
print("==========================", flush=True)
for b in [0.0, 0.6, 0.7, 0.8, 0.9]:
num_solved = np.sum([1 if e > b else 0 for e in executions])
log = "> %.2f | %d" % (b, num_solved)
print(log, flush=True)
file_name = "experiments/routing_%s_bias_%s.txt" % (args.routing, args.use_bias)
with open(file_name, 'a') as f:
f.write("%s\n" % log)
print("==========================")
if __name__ == '__main__':
main()