forked from deepdaiv-multimodal/24s-VQA-MLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
152 lines (123 loc) · 6.17 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from daiv.common.config import Config
from daiv.common.dist_utils import get_rank
from daiv.common.registry import registry
from daiv.conversation.conversation import Chat, CONV_VISION, CONV_DIRECT
# imports modules for registration
from daiv.models import *
from daiv.processors import *
from daiv.models import load_model_and_preprocess
from evaluate import disable_torch_init
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model_name",default='bliva_vicuna', type=str, help='model name')
parser.add_argument("--gpu_id", type=int, default=0, help="specify the gpu to load the model.")
args = parser.parse_args()
return args
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
if torch.cuda.is_available():
device='cuda:{}'.format(args.gpu_id)
else:
device=torch.device('cpu')
disable_torch_init()
if args.model_name == "blip2_vicuna_instruct":
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device)
elif args.model_name == "bliva_vicuna":
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device)
elif args.model_name == "bliva_flant5":
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="flant5xxl", is_eval=True, device=device)
else:
print("Model not found")
vis_processor = vis_processors["eval"]
# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device=device)
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
chat_state = CONV_DIRECT.copy() #CONV_VISION.copy()
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
chatbot[-1][1] = llm_message[0]
return chatbot, chat_state, img_list
title = """<h1 align="center">Demo of BLIVA</h1>"""
description = """<h3>This is the demo of BLIVA. Upload your images and start chatting! <br> To use
example questions, click example image, hit upload, and press enter in the chatbox. </h3>"""
article = """<p><a href='https://gordonhu608.github.io/bliva/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/mlpc-ucsd/BLIVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://arxiv.org/abs/2308.09936'><img src='https://img.shields.io/badge/Paper-ArXiv-red'></a></p>
"""
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart 🔄")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='BLIVA')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
gr.Examples(examples=[
[f"images/example.jpg", "describe this image in detail"],
[f"images/img3.jpg", "What is this image about?"],
[f"images/img4.jpg", "What is the title of this movie?"],
], inputs=[image, text_input])
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch(share=True, enable_queue=True)