forked from deepdaiv-multimodal/24su-FS-VisualGrounding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
230 lines (196 loc) · 11.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import datetime
import json
import random
import time
import math
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import utils.misc as utils
from models import build_model
from datasets import build_dataset
from engine import train_one_epoch, evaluate
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_bert', default=0., type=float)
parser.add_argument('--lr_visu_cnn', default=0., type=float)
parser.add_argument('--lr_visu_tra', default=1e-5, type=float)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--lr_power', default=0.9, type=float, help='lr poly power')
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--eval', dest='eval', default=False, action='store_true', help='if evaluation only')
parser.add_argument('--optimizer', default='rmsprop', type=str)
parser.add_argument('--lr_scheduler', default='poly', type=str)
parser.add_argument('--lr_drop', default=80, type=int)
# Augmentation options
parser.add_argument('--aug_blur', action='store_true',
help="If true, use gaussian blur augmentation")
parser.add_argument('--aug_crop', action='store_true',
help="If true, use random crop augmentation")
parser.add_argument('--aug_scale', action='store_true',
help="If true, use multi-scale augmentation")
parser.add_argument('--aug_translate', action='store_true',
help="If true, use random translate augmentation")
# Model parameters
parser.add_argument('--model_name', type=str, default='DynamicMDETR',
help="Name of model to be exploited.")
parser.add_argument('--model_type', type=str, default='ResNet', choices=('ResNet', 'CLIP'),
help="Name of model to be exploited.")
# Transformers in two branches
parser.add_argument('--bert_enc_num', default=12, type=int)
parser.add_argument('--detr_enc_num', default=6, type=int)
# DETR parameters
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'), help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=0, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
parser.add_argument('--imsize', default=640, type=int, help='image size')
parser.add_argument('--emb_size', default=512, type=int,
help='fusion module embedding dimensions')
# Vision-Language Transformer
parser.add_argument('--use_vl_type_embed', action='store_true',
help="If true, use vl_type embedding")
parser.add_argument('--vl_dropout', default=0.1, type=float,
help="Dropout applied in the vision-language transformer")
parser.add_argument('--vl_nheads', default=8, type=int,
help="Number of attention heads inside the vision-language transformer's attentions")
parser.add_argument('--vl_hidden_dim', default=256, type=int,
help='Size of the embeddings (dimension of the vision-language transformer)')
parser.add_argument('--vl_dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the vision-language transformer blocks")
parser.add_argument('--vl_enc_layers', default=6, type=int,
help='Number of encoders in the vision-language transformer')
parser.add_argument('--vl_dec_layers', default=6, type=int,
help='Number of decoders in the vision-language transformer')
parser.add_argument('--in_points', default=32, type=int)
parser.add_argument('--stages', default=6, type=int)
# Dataset parameters
parser.add_argument('--data_root', type=str, default='/content/drive/MyDrive/fsod/Dynamic-MDETR/ln_data',
help='path to ReferIt splits data folder')
parser.add_argument('--split_root', type=str, default='data',
help='location of pre-parsed dataset info')
parser.add_argument('--dataset', default='referit', type=str,
help='referit/flickr/unc/unc+/gref')
parser.add_argument('--category_file_path', default='data/coco_80.txt', type=str,
help='path to category file')
parser.add_argument('--num_templates', default=5, type=int,
help='number of templates')
parser.add_argument('--template_classes', default=3, type=int,
help='number of classes in template')
parser.add_argument('--max_query_len', default=20, type=int,
help='maximum time steps (lang length) per batch')
# dataset parameters
parser.add_argument('--output_dir', default='./outputs',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=13, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--detr_model', default='/content/drive/MyDrive/fsod/Dynamic-MDETR/checkpoints/detr-r50.pth', type=str, help='detr model')
parser.add_argument('--bert_model', default='bert-base-uncased', type=str, help='bert model')
parser.add_argument('--light', dest='light', default=False, action='store_true', help='if use smaller model')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# evalutaion options
parser.add_argument('--eval_set', default='text', type=str)
parser.add_argument('--eval_model', default='', type=str)
parser.add_argument('--uniform_grid', default=False, type=bool)
parser.add_argument('--uniform_learnable', default=False, type=bool)
parser.add_argument('--different_transformer', default=False, type=bool)
parser.add_argument('--vl_fusion_enc_layers', default=3, type=int)
parser.add_argument('--use_cross_attention', type=int, default=0, help='Use cross attention if 1, otherwise 0')
parser.add_argument('--contrastive_loss', default=0, type=int,
help='Determine whether contrastive loss for pseudo embedding.') # if 1, use loss
parser.add_argument('--weight_contrast', default=0.2, type=float,
help='Determine weight for contrastive loss.')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
device = torch.device(args.device)
# # fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# build dataset
dataset_test = build_dataset(args.eval_set, args)
## note certain dataset does not have 'test' set:
## 'unc': {'train', 'val', 'trainval', 'testA', 'testB'}
# dataset_test = build_dataset('test', args)
if args.distributed:
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
batch_sampler_test = torch.utils.data.BatchSampler(
sampler_test, args.batch_size, drop_last=False)
data_loader_test = DataLoader(dataset_test, args.batch_size, sampler=sampler_test,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
checkpoint = torch.load(args.eval_model, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
# output log
output_dir = Path(args.output_dir)
if args.output_dir and utils.is_main_process():
with (output_dir / "eval_log.txt").open("a") as f:
f.write(str(args) + "\n")
start_time = time.time()
# perform evaluation
accuracy, AP = evaluate(args, model, data_loader_test, device)
if utils.is_main_process():
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
log_stats = {'test_model:': args.eval_model,
'%s_set_accuracy'%args.eval_set: accuracy,
'%s_set_AP'%args.eval_set: AP,
}
print(log_stats)
if args.output_dir and utils.is_main_process():
with (output_dir / "eval_log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser('Dynamic MDETR evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)