-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathconformer.py
445 lines (341 loc) · 16.5 KB
/
conformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, trunc_normal_
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6)):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConvBlock(nn.Module):
def __init__(self, inplanes, outplanes, stride=1, res_conv=False, act_layer=nn.ReLU, groups=1,
norm_layer=partial(nn.BatchNorm2d, eps=1e-6), drop_block=None, drop_path=None):
super(ConvBlock, self).__init__()
expansion = 4
med_planes = outplanes // expansion
self.conv1 = nn.Conv2d(inplanes, med_planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = norm_layer(med_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv2d(med_planes, med_planes, kernel_size=3, stride=stride, groups=groups, padding=1, bias=False)
self.bn2 = norm_layer(med_planes)
self.act2 = act_layer(inplace=True)
self.conv3 = nn.Conv2d(med_planes, outplanes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = norm_layer(outplanes)
self.act3 = act_layer(inplace=True)
if res_conv:
self.residual_conv = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, padding=0, bias=False)
self.residual_bn = norm_layer(outplanes)
self.res_conv = res_conv
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.bn3.weight)
def forward(self, x, x_t=None, return_x_2=True):
residual = x
x = self.conv1(x)
x = self.bn1(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act1(x)
x = self.conv2(x) if x_t is None else self.conv2(x + x_t)
x = self.bn2(x)
if self.drop_block is not None:
x = self.drop_block(x)
x2 = self.act2(x)
x = self.conv3(x2)
x = self.bn3(x)
if self.drop_block is not None:
x = self.drop_block(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.res_conv:
residual = self.residual_conv(residual)
residual = self.residual_bn(residual)
x += residual
x = self.act3(x)
if return_x_2:
return x, x2
else:
return x
class FCUDown(nn.Module):
""" CNN feature maps -> Transformer patch embeddings
"""
def __init__(self, inplanes, outplanes, dw_stride, act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-6)):
super(FCUDown, self).__init__()
self.dw_stride = dw_stride
self.conv_project = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, padding=0)
self.sample_pooling = nn.AvgPool2d(kernel_size=dw_stride, stride=dw_stride)
self.ln = norm_layer(outplanes)
self.act = act_layer()
def forward(self, x, x_t):
x = self.conv_project(x) # [N, C, H, W]
x = self.sample_pooling(x).flatten(2).transpose(1, 2)
x = self.ln(x)
x = self.act(x)
x = torch.cat([x_t[:, 0][:, None, :], x], dim=1)
return x
class FCUUp(nn.Module):
""" Transformer patch embeddings -> CNN feature maps
"""
def __init__(self, inplanes, outplanes, up_stride, act_layer=nn.ReLU,
norm_layer=partial(nn.BatchNorm2d, eps=1e-6),):
super(FCUUp, self).__init__()
self.up_stride = up_stride
self.conv_project = nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, padding=0)
self.bn = norm_layer(outplanes)
self.act = act_layer()
def forward(self, x, H, W):
B, _, C = x.shape
# [N, 197, 384] -> [N, 196, 384] -> [N, 384, 196] -> [N, 384, 14, 14]
x_r = x[:, 1:].transpose(1, 2).reshape(B, C, H, W)
x_r = self.act(self.bn(self.conv_project(x_r)))
return F.interpolate(x_r, size=(H * self.up_stride, W * self.up_stride))
class Med_ConvBlock(nn.Module):
""" special case for Convblock with down sampling,
"""
def __init__(self, inplanes, act_layer=nn.ReLU, groups=1, norm_layer=partial(nn.BatchNorm2d, eps=1e-6),
drop_block=None, drop_path=None):
super(Med_ConvBlock, self).__init__()
expansion = 4
med_planes = inplanes // expansion
self.conv1 = nn.Conv2d(inplanes, med_planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = norm_layer(med_planes)
self.act1 = act_layer(inplace=True)
self.conv2 = nn.Conv2d(med_planes, med_planes, kernel_size=3, stride=1, groups=groups, padding=1, bias=False)
self.bn2 = norm_layer(med_planes)
self.act2 = act_layer(inplace=True)
self.conv3 = nn.Conv2d(med_planes, inplanes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = norm_layer(inplanes)
self.act3 = act_layer(inplace=True)
self.drop_block = drop_block
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.bn3.weight)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.bn1(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.drop_block is not None:
x = self.drop_block(x)
x = self.act2(x)
x = self.conv3(x)
x = self.bn3(x)
if self.drop_block is not None:
x = self.drop_block(x)
if self.drop_path is not None:
x = self.drop_path(x)
x += residual
x = self.act3(x)
return x
class ConvTransBlock(nn.Module):
"""
Basic module for ConvTransformer, keep feature maps for CNN block and patch embeddings for transformer encoder block
"""
def __init__(self, inplanes, outplanes, res_conv, stride, dw_stride, embed_dim, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
last_fusion=False, num_med_block=0, groups=1):
super(ConvTransBlock, self).__init__()
expansion = 4
self.cnn_block = ConvBlock(inplanes=inplanes, outplanes=outplanes, res_conv=res_conv, stride=stride, groups=groups)
if last_fusion:
self.fusion_block = ConvBlock(inplanes=outplanes, outplanes=outplanes, stride=2, res_conv=True, groups=groups)
else:
self.fusion_block = ConvBlock(inplanes=outplanes, outplanes=outplanes, groups=groups)
if num_med_block > 0:
self.med_block = []
for i in range(num_med_block):
self.med_block.append(Med_ConvBlock(inplanes=outplanes, groups=groups))
self.med_block = nn.ModuleList(self.med_block)
self.squeeze_block = FCUDown(inplanes=outplanes // expansion, outplanes=embed_dim, dw_stride=dw_stride)
self.expand_block = FCUUp(inplanes=embed_dim, outplanes=outplanes // expansion, up_stride=dw_stride)
self.trans_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rate)
self.dw_stride = dw_stride
self.embed_dim = embed_dim
self.num_med_block = num_med_block
self.last_fusion = last_fusion
def forward(self, x, x_t):
x, x2 = self.cnn_block(x)
_, _, H, W = x2.shape
x_st = self.squeeze_block(x2, x_t)
x_t = self.trans_block(x_st + x_t)
if self.num_med_block > 0:
for m in self.med_block:
x = m(x)
x_t_r = self.expand_block(x_t, H // self.dw_stride, W // self.dw_stride)
x = self.fusion_block(x, x_t_r, return_x_2=False)
return x, x_t
class Conformer(nn.Module):
def __init__(self, patch_size=16, in_chans=3, num_classes=1000, base_channel=64, channel_ratio=4, num_med_block=0,
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.):
# Transformer
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
assert depth % 3 == 0
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.trans_dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
# Classifier head
self.trans_norm = nn.LayerNorm(embed_dim)
self.trans_cls_head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.pooling = nn.AdaptiveAvgPool2d(1)
self.conv_cls_head = nn.Linear(int(256 * channel_ratio), num_classes)
# Stem stage: get the feature maps by conv block (copied form resnet.py)
self.conv1 = nn.Conv2d(in_chans, 64, kernel_size=7, stride=2, padding=3, bias=False) # 1 / 2 [112, 112]
self.bn1 = nn.BatchNorm2d(64)
self.act1 = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 1 / 4 [56, 56]
# 1 stage
stage_1_channel = int(base_channel * channel_ratio)
trans_dw_stride = patch_size // 4
self.conv_1 = ConvBlock(inplanes=64, outplanes=stage_1_channel, res_conv=True, stride=1)
self.trans_patch_conv = nn.Conv2d(64, embed_dim, kernel_size=trans_dw_stride, stride=trans_dw_stride, padding=0)
self.trans_1 = Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=self.trans_dpr[0],
)
# 2~4 stage
init_stage = 2
fin_stage = depth // 3 + 1
for i in range(init_stage, fin_stage):
self.add_module('conv_trans_' + str(i),
ConvTransBlock(
stage_1_channel, stage_1_channel, False, 1, dw_stride=trans_dw_stride, embed_dim=embed_dim,
num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=self.trans_dpr[i-1],
num_med_block=num_med_block
)
)
stage_2_channel = int(base_channel * channel_ratio * 2)
# 5~8 stage
init_stage = fin_stage # 5
fin_stage = fin_stage + depth // 3 # 9
for i in range(init_stage, fin_stage):
s = 2 if i == init_stage else 1
in_channel = stage_1_channel if i == init_stage else stage_2_channel
res_conv = True if i == init_stage else False
self.add_module('conv_trans_' + str(i),
ConvTransBlock(
in_channel, stage_2_channel, res_conv, s, dw_stride=trans_dw_stride // 2, embed_dim=embed_dim,
num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=self.trans_dpr[i-1],
num_med_block=num_med_block
)
)
stage_3_channel = int(base_channel * channel_ratio * 2 * 2)
# 9~12 stage
init_stage = fin_stage # 9
fin_stage = fin_stage + depth // 3 # 13
for i in range(init_stage, fin_stage):
s = 2 if i == init_stage else 1
in_channel = stage_2_channel if i == init_stage else stage_3_channel
res_conv = True if i == init_stage else False
last_fusion = True if i == depth else False
self.add_module('conv_trans_' + str(i),
ConvTransBlock(
in_channel, stage_3_channel, res_conv, s, dw_stride=trans_dw_stride // 4, embed_dim=embed_dim,
num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=self.trans_dpr[i-1],
num_med_block=num_med_block, last_fusion=last_fusion
)
)
self.fin_stage = fin_stage
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.)
nn.init.constant_(m.bias, 0.)
elif isinstance(m, nn.GroupNorm):
nn.init.constant_(m.weight, 1.)
nn.init.constant_(m.bias, 0.)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token'}
def forward(self, x):
B = x.shape[0]
cls_tokens = self.cls_token.expand(B, -1, -1)
# pdb.set_trace()
# stem stage [N, 3, 224, 224] -> [N, 64, 56, 56]
x_base = self.maxpool(self.act1(self.bn1(self.conv1(x))))
# 1 stage
x = self.conv_1(x_base, return_x_2=False)
x_t = self.trans_patch_conv(x_base).flatten(2).transpose(1, 2)
x_t = torch.cat([cls_tokens, x_t], dim=1)
x_t = self.trans_1(x_t)
# 2 ~ final
for i in range(2, self.fin_stage):
x, x_t = eval('self.conv_trans_' + str(i))(x, x_t)
# conv classification
x_p = self.pooling(x).flatten(1)
conv_cls = self.conv_cls_head(x_p)
# trans classification
x_t = self.trans_norm(x_t)
tran_cls = self.trans_cls_head(x_t[:, 0])
return [conv_cls, tran_cls]