-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter11.Rmd
489 lines (365 loc) · 11 KB
/
chapter11.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
---
title: "第11章 结构方程模型"
author: "wmj"
date: "`r Sys.Date()`"
output:
officedown::rdocx_document:
number_sections: yes
df_print: kable
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
echo = FALSE,
warning = FALSE,
message = FALSE,
fig.asp = 0.618,
dpi = 300
)
options(digits = 3)
```
# 模型的识别与拟合(p197)
图11-9模型中,已知外生潜变量测量指标数目p为4个,内生潜变量的测量指标数目q为8个,模型需要估计的参数数量t为29个。
>> 我的理解应该是39个
```{r, echo=FALSE}
knitr::include_graphics("./simulate/sem.png")
```
表11-2 常用拟合指标的合理取值范围(p200)
```{r}
library(tidyverse)
tab11_02 <- readxl::read_excel("./rawdata/T11-02.xlsx", skip = 1L)
tab11_02 %>%
flextable::flextable() %>%
flextable::autofit()
```
# 结构方程模型在管理研究中的应用(p200)
## 1.测量模型检验(p203)
```{r}
library(tidyverse)
library(lavaan)
d <- haven::read_sav("rawdata/AMOS结构方程模型.sav")
d %>% sjPlot::view_df()
```
```{r}
cfamodel <- '
QH =~ QH1 + QH2 + QH3
TZ =~ TZ1 + TZ2 + TZ3 + TZ4
GX =~ GX1 + GX2 + GX3 + GX4
MY =~ MY1 + MY2 + MY3
LZ =~ LZ1 + LZ2 + LZ3 + LZ4
'
fit_cfa <- cfa(cfamodel,
data = d,
estimator = "MLR",
mimic = "Mplus")
```
表11-7,信度检验汇总结果(p211)
```{r}
Cronbach_alpha <- semTools::reliability(fit_cfa)[1, ]
Cronbach_alpha %>%
enframe() %>%
rename(`Cronbach alpha` = value) %>%
flextable::flextable() %>%
flextable::autofit()
```
一般认为Cronbach' alpha 的值达到0.6即为可接受的信度,如果系数小于0.6,说明信度**不佳**,需要对测量项进行调整。如果该系数在0.6 ~ 0.7,则说明信度为**中等可信**;如果系数在0.7 ~ 0.9,则说明信度为**可信**;如果系数在0.9以上,则说明信度为**很可信**。(p209)
表11-8,各潜变量的组合信度CR值(p212)
```{r}
CR <- semTools::compRelSEM(fit_cfa)
CR %>%
enframe() %>%
pivot_wider() %>%
flextable::flextable() %>%
flextable::autofit()
```
组合信度值反映了由多个测量指标组合而成的整体对构念测量的一致性和稳定性。当CR值大于等于0.7时,说明组合信度良好。(p212)
表11-9,因子载荷分析结果(p214)
```{r}
fit_cfa %>%
parameterEstimates(standardized = T) %>%
filter(op == "=~") %>%
select("Variables" = lhs, "Items" = rhs, "Factor Loading" = std.all) %>%
flextable::flextable() %>%
flextable::merge_v(j = ~ Variables) %>%
flextable::border_inner_h() %>%
flextable::border_inner_v() %>%
flextable::autofit()
```
一般来说,验证性因子分析要求因子荷载在0.70以上。 (p214)
表11-10,聚合效度分析结果(p215)
```{r}
AVE <- semTools::AVE(fit_cfa)
AVE %>%
enframe() %>%
pivot_wider() %>%
flextable::flextable() %>%
flextable::autofit()
```
一般来说,AVE值大于0.5,则说明该构念的聚合效度良好。(p215)
表11-11(a),相关系数分析输出结果(p215)
```{r}
m <- lavInspect(fit_cfa, what = "cor.lv")
m[upper.tri(m)] <- NA
m %>%
as.data.frame() %>%
rownames_to_column(var = "variable") %>%
#mutate(across(-variable, ~.x^2)) %>%
rename(" " = variable) %>%
flextable::flextable() %>%
flextable::colformat_double(digits = 3) %>%
flextable::autofit()
```
表11-11(b),区分效度检验(p215)
```{r}
m <- lavInspect(fit_cfa, what = "cor.lv")
m[upper.tri(m)] <- NA
diag(m) <- semTools::AVE(fit_cfa) %>% sqrt()
m %>%
as.data.frame() %>%
rownames_to_column() %>%
rename(" " = rowname) %>%
flextable::flextable() %>%
flextable::colformat_double(digits = 3) %>%
flextable::bold(i = 1, j = 2) %>%
flextable::bold(i = 2, j = 3) %>%
flextable::bold(i = 3, j = 4) %>%
flextable::bold(i = 4, j = 5) %>%
flextable::bold(i = 5, j = 6) %>%
flextable::autofit()
```
当AVE的平方根大于该构念与其他构念的相关系数的绝对值时,表明区分效度良好。(p215)
论文中,我们往往会一并呈现
```{r}
CR <- semTools::compRelSEM(fit_cfa)
Cronbach_alpha <- semTools::reliability(fit_cfa)[1, ]
AVE <- semTools::AVE(fit_cfa)
tibble(
items = names(CR),
alpha = Cronbach_alpha,
CR = CR,
AVE = AVE,
) %>%
flextable::flextable() %>%
flextable::colformat_double(digits = 3) %>%
flextable::autofit()
```
表11-12,拟合指数数据(p216)
```{r}
index <- c(
"chisq", "df", "pvalue", "cfi", "tli",
"rmsea", "rmsea.ci.lower", "rmsea.ci.upper",
"srmr", "aic", "bic"
)
fit_cfa %>%
fitMeasures(
fit.measures = index,
output = "matrix"
) %>%
as.data.frame() %>%
rownames_to_column() %>%
set_names(c("index", "value")) %>%
flextable::flextable() %>%
flextable::autofit() %>%
flextable::colformat_double(digits = 4)
```
```{r}
library(lavaanExtra)
fit_cfa %>%
lavaanExtra::nice_fit(nice_table = TRUE) %>%
flextable::fontsize(size = 9, part = "all") %>%
flextable::align(align = "center", part = "body") %>%
flextable::valign(valign = "center", part = "body")
```
(6) 共同方法偏差
1) Harman 单因素检验法
```{r}
library(psych)
fit_efa <- d %>%
fa(nfactors = 4,
rotate = "varimax",
fm = "pa",
scores = TRUE,
e.values = TRUE,
values = TRUE)
# 特征值选择大于1的个数
eigenvalue <- fit_efa$e.values
eigenvalue
```
```{r}
fit_efa$Vaccounted
```
由输出数据可知,有四个特征根大于1的因子,而且最大因子方差解释度为(23.6%),小于50%,在合格范围内。因此,可以判定该模型中不存在严重的共同方法偏差。(p217)
2) 单因子的验证性因子分析
```{r}
one <- '
f1 =~ QH1 + QH2 + QH3 +
TZ1 + TZ2 + TZ3 + TZ4 +
GX1 + GX2 + GX3 + GX4 +
MY1 + MY2 + MY3 +
LZ1 + LZ2 + LZ3 + LZ4
'
fit_one <- cfa(model = one, data = d)
fit_one %>%
lavaanExtra::nice_fit(nice_table = TRUE) %>%
flextable::fontsize(size = 9, part = "all") %>%
flextable::align(align = "center", part = "body") %>%
flextable::valign(valign = "center", part = "body")
```
表11-13,单因子模型与假设模型拟合指数数据对比(p219)
```{r}
mylist <- lst(cfamodel, fit_one)
mylist %>%
map( ~cfa(.x, data = d)) %>%
lavaanExtra::nice_fit(nice_table = TRUE) |>
flextable::fontsize(size = 9, part = "all") %>%
flextable::align(align = "center", part = "body") %>%
flextable::valign(valign = "center", part = "body")
```
单因子模型拟合后的各项拟合指数都在合格范围外,与原模型指标相比较差,因此可以判断出本研究不存在严重的共同方法偏差。(p219)
3) 加入共同方法因子的验证性因子分析
```{r}
bifactor <- '
QH =~ NA*QH1 + QH2 + QH3
TZ =~ NA*TZ1 + TZ2 + TZ3 + TZ4
GX =~ NA*GX1 + GX2 + GX3 + GX4
MY =~ NA*MY1 + MY2 + MY3
LZ =~ NA*LZ1 + LZ2 + LZ3 + LZ4
G =~ NA* QH1 + QH2 + QH3 +
TZ1 + TZ2 + TZ3 + TZ4 +
GX1 + GX2 + GX3 + GX4 +
MY1 + MY2 + MY3 +
LZ1 + LZ2 + LZ3 + LZ4
QH ~~ 1*QH
TZ ~~ 1*TZ
GX ~~ 1*GX
MY ~~ 1*MY
LZ ~~ 1*LZ
G ~~ 1*G
QH ~~ 0*G
TZ ~~ 0*G
GX ~~ 0*G
MY ~~ 0*G
LZ ~~ 0*G
QH ~~ 0*TZ
QH ~~ 0*GX
QH ~~ 0*MY
QH ~~ 0*LZ
TZ ~~ 0*GX
TZ ~~ 0*MY
TZ ~~ 0*LZ
GX ~~ 0*MY
GX ~~ 0*LZ
MY ~~ 0*LZ
'
fit_bi <- cfa(model = bifactor, data = d)
fit_bi %>%
lavaanExtra::nice_fit(nice_table = TRUE) %>%
flextable::fontsize(size = 9, part = "all") %>%
flextable::align(align = "center", part = "body") %>%
flextable::valign(valign = "center", part = "body")
```
表11-14,加入共同方法因子后模型及原模型拟合指数数据汇合(p221)
```{r}
mylist <- lst(cfamodel, fit_bi)
mylist %>%
map( ~cfa(.x, data = d)) %>%
lavaanExtra::nice_fit(nice_table = TRUE) |>
flextable::fontsize(size = 9, part = "all") %>%
flextable::align(align = "center", part = "body") %>%
flextable::valign(valign = "center", part = "body")
```
通过对比结果可知,加入共同方法偏差因子之后的模型(`fit_bi`),模型拟合指数改善情况并不明显,即`cfamodel` 与 `fit_bi`差别不大,说明不存在共同方法偏差。(p221)
## 2.结构模型计算(p222)
```{r}
mod <- '
QH =~ QH1 + QH2 + QH3
TZ =~ TZ1 + TZ2 + TZ3 + TZ4
GX =~ GX1 + GX2 + GX3 + GX4
MY =~ MY1 + MY2 + MY3
LZ =~ LZ1 + LZ2 + LZ3 + LZ4
MY ~ H1*QH + H2*TZ + H3*GX
LZ ~ H4*MY
'
fit_sem <- sem(mod, data = d)
```
表11-15,结构模型拟合指数(p223)
```{r}
fit_sem %>%
lavaanExtra::nice_fit(nice_table = TRUE) %>%
flextable::fontsize(size = 9, part = "all") %>%
flextable::align(align = "center", part = "body") %>%
flextable::valign(valign = "center", part = "body")
```
表11-16,标准化路径系数及显著性输出结果(p224)
```{r}
fit_sem %>%
parameterEstimates(standardized = T) %>%
filter(op == "~") %>%
select(lhs, rhs, label, "coef" = std.all, "p" = pvalue) %>%
mutate(
Hypothesis = str_c(label, ": ", rhs, "-->", lhs),
.keep = "unused",
.before = 1
) %>%
mutate(Interpretation = if_else(p <= 0.05, "通过", "不通过")) %>%
flextable::flextable() %>%
flextable::colformat_double(digits = 3) %>%
flextable::autofit()
```
## 3.分析结果(p224)
## 4.利用Amos软件对中介效应进行检验 (p224)
```{r}
library(tidyverse)
library(lavaan)
d <- haven::read_sav("rawdata/Amos中介效应检验.sav")
```
```{r}
model <- '
QH =~ QH1 + QH2 + QH3
MY =~ MY1 + MY2 + MY3
LZ =~ LZ1 + LZ2 + LZ3 + LZ4
MY ~ a * QH
LZ ~ b * MY + cprime * QH
indirect := a*b
total := a*b + cprime
'
fit <- sem(model,
data = d,
estimator = "ML",
se = "bootstrap",
mimic = "Mplus")
```
表11-17,总效应显著性检验(p227)
```{r}
fit %>%
#parameterEstimates(standardized = TRUE) %>%
standardizedSolution() %>%
filter(label == "total") %>%
select(label, est.std, ci.lower, ci.upper, pvalue) %>%
flextable::flextable() %>%
flextable::autofit() %>%
flextable::colformat_double(digits = 3) %>%
flextable::color(j = c("ci.lower", "ci.upper"), color = "red")
```
表11-18,直接效应、间接效应显著性检验(p229)
```{r}
fit %>%
standardizedSolution() %>%
filter(label %in% c("a", "b", "cprime", "indirect")) %>%
select(label, est.std, ci.lower, ci.upper, pvalue) %>%
flextable::flextable() %>%
flextable::autofit() %>%
flextable::colformat_double(digits = 3) %>%
flextable::color(j = c("ci.lower", "ci.upper"), color = "red")
```
表11-19,直接效应、间接效应、总效应估计值(p229)
```{r}
fit %>%
standardizedSolution() %>%
filter(label %in% c("total", "cprime", "indirect")) %>%
select(label, est.std, ci.lower, ci.upper, pvalue) %>%
arrange(factor(label, levels = c("total", "cprime", "indirect"))) %>%
flextable::flextable() %>%
flextable::autofit() %>%
flextable::colformat_double(digits = 3) %>%
flextable::color(j = ~est.std, color = "red")
```