-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGaussian_processes.Rmd
625 lines (448 loc) · 14.9 KB
/
Gaussian_processes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# 寻找系外行星 {#Gaussian-processes}
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(tidybayes)
library(rstan)
```
## 目的
重复[youtube video](https://www.youtube.com/watch?v=132s2B-mzBg)上的问题,数据来源[github](https://github.com/MaggieLieu/STAN_tutorials)
## 高斯 Gaussian Process
In practice for given set of data points, there are an infinity number of functions that could provide a good fit.
Gaussian processes assign each of the possible function a probability.
and the mean over the probability distribution provides the most probable
fit to the data. Therefore a Gaussian process is a probabilistic method that gives the confidence for the predicted line.
It is a prior over functions `P(f)` that can be used for
bayesian regression.
$$
P(f) = GP(\mu(x), k(x|\theta))
$$
Similar to a simple multivariate normal distribution which
is parameterized by a mean vector `mu` and a covariance matrix
sigma. A Gaussian process is parameterized by a mean function
`mu` and a covariate function `k` where $\theta$ are the
parameters of the specific kernel.
The mean function `mu`
is self-expanatory, the mean over all possible functions
sampled from the Gaussian process will recover this function.
The covariance function is a covariance kernel applied on all
**pairwise data points**. it determines the variation in the
functions of the Gaussian process. The mean function can be
anything, but the covariance function must produce a positive
definite matrix for the input `x`.
A multivariate Gaussian distribution has the same number of
dimensions as the number of random variables.
So for `n` data points we have an `n` dimensional multivariate
Gaussian distribution. Predicted functions made from the Gaussian
process are samples drawn from this huge multivariate Gaussian distribution.
The observed data `y` are then drawn from each sampled function
$$
y \sim N(f, \sigma^2)
$$
Typically assuming a Gaussian likelihood, the most common kernel
used in Gaussian process is the RBF kernel. sometimes also known as
the **Exponentiated quadratic kernel**. The resulting covariance matrix
looks like this
$$
K(x|\alpha, \rho)_{i, j} = \alpha^2 \exp \left( -
\dfrac{1}{2\rho^2} \sum_{d=1}^D (x_{i,d} - x_{j,d})^2 \right)
$$
As you can see from the functional form, it's defined by two
parameters:
- $\alpha$ is the marginal standard deviation, it measures the average distance from the mean function.
- $\rho$ the length scale is the frequency of the functions represented by the Gaussian process, essentially it's a measure of the influence on neighboring points. row values close to zero represent high frequency functions, so each point has less influence on the neighbors, whereas high row values give rise to low frequency functions that have more influence on the neighbors.
The periodic kernel is often the kernel used when you are
interested in modeling fluctuations that repeat themselves exactly.
It's defined as follows
$$
K(x|\alpha, \rho, p)_{i, j} = \alpha^2 \exp \left( -
\dfrac{2}{\rho^2} \sum_{d=1}^D \sin^2\left(\dfrac{\pi|x_{i,d} - x_{j,d}|}{p}\right) \right)
$$
where $\alpha$ and $\rho$ share the same role as defined for the RBF kernel,
but additionally it requires a parameter `p` for the periodicity.
This determines the distance between repetitions. There are so many more different kernels that can be chosen, each with their different parameters.
Different kernels can also be combined together through addition multiplication and convolution(乘法和卷积). But the choice of kernel will affect the generalizational properties of your Gaussian process, so it's really important that you choose
something that is suitable for you problem. this is out of the scope for this tutorial.
## stan
we are going to use Stan to sample functions from a Gaussian process.
- 协方差矩阵,we are using the `expoinentiated quadratic` given by the function
`cov_exp_quad()`, plus a small constant added to the diagonal to ensure a positive definite matrix that it is symmetric and the eigenvalues and positive.
# Simulating from a gaussian process
这里`x = seq(-10, 10, length.out = 100)` 定义等距的空间点,用来刻画协方差矩阵,这个协方差矩阵有100*100大小
这些点x坐标,看成地理位置上的点,协方差矩阵,通过彼此距离的远近代表两个点之间的相关性
```{r, warning=FALSE, message=FALSE, results=FALSE}
stan_program <- "
data {
int<lower=1> N; //number of data points
real x[N]; //data
real<lower=0> alpha;
real<lower=0> rho;
}
transformed data {
matrix[N,N] K = cov_exp_quad(x, alpha, rho) + diag_matrix(rep_vector(1e-9,N)); // Covariance function
vector[N] mu = rep_vector(0,N); //mean
}
generated quantities {
vector[N] f = multi_normal_rng(mu, K); // only one point
}
"
stan_data <- list(
N = 100,
x = seq(-10, 10, length.out = 100), # equally spaced points
alpha = 1,
rho = 1
)
fit <- stan(
model_code = stan_program,
data = stan_data,
algorithm = 'Fixed_param',
warmup = 0,
chains = 1, iter = 1000
)
```
```{r}
params <- extract(fit)
params
```
- points 100
- iters 1000
- ndraw 200 (ndraw < iters)
如果在`tidybayes::gather_draws()`不指定ndraw,它就会使用stan代码中的iters的数量,比如这里的iters =1000,所以最后的tibble是 100 * 1000. 当然,我们可以只抽取部分,比如在`tidybayes::gather_draws(f[i], n= 500)`
```{r}
raw <- tibble(
i = 1:100,
x = seq(-10, 10, length.out = 100)
)
raw
```
```{r}
average <- fit %>%
tidybayes::gather_draws(f[i]) %>%
tidybayes::mean_qi() %>%
ungroup()
average
```
```{r}
average %>%
ggplot(aes(x = i, y = .value)) +
geom_point(color = "red") +
geom_ribbon(aes(ymin = .lower, ymax = .upper), alpha = 0.1)
```
```{r}
res <- fit %>% tidybayes::gather_draws(f[i])
res %>%
ungroup() %>%
select(i, .draw, .value) %>%
group_by(i) %>%
nest()
```
```{r}
res <- fit %>% tidybayes::gather_draws(f[i], n = 50)
res %>%
ungroup() %>%
left_join(raw, by = "i") %>%
ggplot() +
geom_line(aes(x = i, y = .value, group = .draw)) +
geom_point(data = average, aes(x = i, y = .value), color = "red")
```
## Real data
we are going to apply our newly learn skills to astronomical light curves, the data is the observed flux, or the light from this star.
```{r}
rawdata <- read_csv(here::here("rawdata", "kplr003632418-2009131105131_llc.csv"))
rawdata
```
```{r}
glimpse(rawdata)
```
```{r}
rawdata %>%
ggplot(aes(x = TIME, y = SAP_FLUX)) +
geom_point()
```
```{r}
d <- rawdata %>%
filter(!is.na(SAP_FLUX)) %>%
mutate(
across(SAP_FLUX, ~ (.x - mean(.x))/sd(.x))
) %>%
mutate(i = 1:n()) %>%
select(i, TIME, SAP_FLUX)
d
```
As you can see the light is not constant it goes up and down, now this can be due to noise, it can be due to the rotation of the star, but very occasionally you might get
periodic dips(周期性下降) in the light that could correspond to a planet orbiting the star(围绕恒星运行的行星), and blocking out some of the star's light as it moves in front of it.
Assuming that the output of our Gaussian process is normal, there are two ways that we can approach fitting the gp.
### Latent Variable Gaussian Process
__method one__ which we call the latent variable Gaussian Process
is a full generative model in that each Gaussian process function is
drawn from the multivariate normal distribution.
Data generated with Gaussian white noise about a function `f`
is modeled by the following likelihood.
$$
f \sim \text{multivariate_normal}(0, K)
$$
Observations:
$$
P(y|f) = \text{normal}(0, \sigma^2)
$$
### Marginal Likelihood Gaussian Process
if we don't care about the functions themselves and only about the parameters of the Gaussian process, we can use __method two__, the marginal likelihood Gaussian process, whereby we integrate over all functions to obtain the marginal likelihood.
$$
P(y) = \int dfP(y|f) P(f)
$$
This is equivalent to this
$$
P(y) = \text{multivariate_normal}(0, K)
$$
The sigma squared added to the diagonal also ensures that the resulting matrix is positive definite. **This can speed up the computation significantly, because the inference is made over a much lower dimensional parameter space**.
so let's begin with __method two__ the Marginal Likelihood Gaussian Process
the Stan model looks like the following.
数学公式呢?
- 认为每个点都是服从(均值mu为0,方差sigma= 波动),但彼此相邻的两点都有协方差
```{r}
stan_data <- d %>%
tidybayes::compose_data(
N = nrow(.),
x = TIME,
y = SAP_FLUX
)
```
In model block we also declare the chileski decomposition of the covariance function. Decomposing the matrix into a lower triangular matrix and its conjugate transpose and working with the lower triangular matrix is much more numerically stable or efficient to work with when dealing with very large matrices
$$
K = L L^T \\
\text{L is lower triangular matrix}
$$
```{r, warning=FALSE, message=FALSE, results=FALSE}
stan_program <- "
data {
int<lower=1> N;
real x[N];
vector[N] y;
}
transformed data {
vector[N] mu = rep_vector(0,N);
}
parameters {
real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
}
model {
matrix[N,N] K = cov_exp_quad(x, alpha, rho) + diag_matrix(rep_vector(square(sigma),N));
matrix[N,N] L_K = cholesky_decompose(K);
rho ~ normal(0, 3);
alpha ~ normal(0, 1);
sigma ~ normal(0, 1);
y ~ multi_normal_cholesky(mu, L_K);
}
"
fit2 <- stan(model_code = stan_program, data = stan_data)
```
```{r}
saveRDS(fit2, "fit2.rds")
```
```{r}
fit2 <- readRDS("fit2.rds")
```
```{r}
params <- extract(fit2)
alpha <- mean(params$alpha)
rho <- mean(params$rho)
sigma <- mean(params$sigma)
```
得到系数后,那怎么放入公式中?又如何画出拟合的曲线,步骤是这样的,
- 计算样本均值,得到参数
- 将参数返回到stan_code的`cov_exp_quad()`中得到K, 最后用`multi_normal_rng(mu, K)`得到预测值
- this is because the gp is not conditioned on the data yet. 这句话我没懂
(alpha, rho 不是曲线的系数么?一对的alpha/rho, 一条曲线), 我有了alpha/rho,就应该可以画出曲线了啊
```{r, warning=FALSE, message=FALSE, results=FALSE}
stan_program <- "
data {
int<lower=1> N; // number of data points
real x[N]; // data
real<lower=0> alpha;
real<lower=0> rho;
}
transformed data {
matrix[N,N] K = cov_exp_quad(x, alpha, rho) + diag_matrix(rep_vector(1e-9,N)); // Covariance function
vector[N] mu = rep_vector(0,N); // mean
}
generated quantities {
vector[N] f = multi_normal_rng(mu, K); // N data points
}
"
# stan_data <- list(
# N = 500,
# x = seq(120, 132, length.out = 500),
# alpha = mean(params$alpha),
# rho = mean(params$rho)
# )
stan_data <- d %>%
tidybayes::compose_data(
N = nrow(.),
x = TIME,
alpha = mean(params$alpha),
rho = mean(params$rho)
)
gen_sam <- stan(
model_code = stan_program,
data = stan_data,
algorithm = 'Fixed_param',
warmup = 0,
chains = 1,
iter = 1000
)
```
```{r}
saveRDS(gen_sam, "gen_sam.rds")
```
```{r}
gen_sam <- readRDS("gen_sam.rds")
```
```{r}
res <- gen_sam %>% tidybayes::gather_draws(f[i], n = 1000)
res %>%
ungroup() %>%
ggplot() +
geom_line(aes(x = i, y = .value, group = .draw), alpha = 0.1) +
geom_point(data = d, aes(x = i, y = SAP_FLUX), color = "red" )
```
they don't seem to quite fit the observed data so well, this is because the gp is not conditioned on the data yet. 这句话我没懂,`y ~ multi_normal_cholesky(mu, L_K);` 难道不是conditioned on the data吗?
## predict
To make predictions conditional data the data, we can rewrite it as
the following
$$
P(y_2|y_1,x_1, x_2, f) = P(y_2, y1|x_2, x_1, x_2, f)/P(y_1|x_1, f)
$$
In other words, we need to model the distribution of the
observed variants `y1` and the to be predicted variants `y2` jointly.
We can do this using latent variable model, .ie, model one
```{r, warning=FALSE, message=FALSE, results=FALSE}
stan_program <- "
data {
int<lower=1> N1; //number data observed
real x1[N1];
vector[N1] y1;
int<lower=1> N2; //number to be predicted
real x2[N2];
}
transformed data{
int<lower=1> N = N1 + N2;
real x[N]; //number all
for (n1 in 1:N1) x[n1] = x1[n1];
for (n2 in 1:N2) x[N1 + n2] = x2[n2];
}
parameters {
real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;
}
transformed parameters {
vector[N] f;
{
matrix[N,N] K = cov_exp_quad(x, alpha, rho) + diag_matrix(rep_vector(1e-9, N));
matrix[N,N] L_K = cholesky_decompose(K);
f = L_K * eta;
}
}
model {
rho ~ normal(0,3);
alpha ~ normal(0,1);
sigma ~ normal(0,1);
eta ~ normal(0,1);
y1 ~ normal(f[1:N1], sigma);
}
generated quantities {
vector[N2] y2;
for(n2 in 1:N2)
y2[n2] = normal_rng(f[N1 + n2], sigma);
}
"
N_predict <- 100
x_predict <- seq(range(d$TIME)[1], 132, length.out = N_predict)
d <- d %>%
dplyr::sample_n(200)
pred_data <- list(
N1 = nrow(d),
x1 = d$TIME,
y1 = d$SAP_FLUX,
N2 = N_predict,
x2 = x_predict
)
pred_fit <- stan(model_code = stan_program,
data = pred_data,
iter = 1000,
chains = 1
)
```
```{r}
saveRDS(pred_fit, "pred_fit.rds")
```
```{r}
pred_fit <- read_rds("pred_fit.rds")
```
```{r}
pred_params <- extract(pred_fit)
#pred_params
```
```{r}
yr = c(-2,2)
xr = c(120, 132)
N_obs <- 200
plot(xr, yr, ty='n')
for( i in 1:500){
lines(x_predict, pred_params$f[i,(N_obs+1):(N_obs+N_predict)], col=rgb(0,0,0,0.1))
}
#points(data$x, data$y, pch=20, col='orange', cex=0.3)
```
```{r}
pred_fit %>%
tidybayes::gather_draws(f[i]) %>% # .iteration 有多少,就.draw多少
filter(i > 200) %>% # 只看预测值
ungroup() %>%
ggplot() +
geom_line(aes(x = i, y = .value, group = .draw), alpha = 0.1) +
theme_classic()
```
## 用隐变量模型,重新做一遍,自己预测自己
参数要放在transformed parameters block中,才能传递到generated quantities使用
```{r, warning=FALSE, message=FALSE, results=FALSE}
stan_program <- "
data {
int<lower=1> N;
real x[N];
vector[N] y;
}
transformed data {
vector[N] mu = rep_vector(0,N);
}
parameters {
real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
}
transformed parameters {
matrix[N,N] K = cov_exp_quad(x, alpha, rho) + diag_matrix(rep_vector(square(sigma),N));
matrix[N,N] L_K = cholesky_decompose(K);
}
model {
rho ~ normal(0, 3);
alpha ~ normal(0, 1);
sigma ~ normal(0, 1);
y ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {
vector[N] y_pred;
y_pred = multi_normal_cholesky_rng(mu, L_K);
// vector[N] f = multi_normal_rng(mu, K); // N data points
}
"
stan_data <- d %>%
tidybayes::compose_data(
N = nrow(.),
x = TIME,
y = SAP_FLUX
)
fit22 <- stan(model_code = stan_program, data = stan_data)
```
## 未完待续