-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbayes-theorem-in-three-panels.Rmd
521 lines (378 loc) · 12.3 KB
/
bayes-theorem-in-three-panels.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# 三张图讲贝叶斯公式 {#bayesian-in-three-panels}
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(tidybayes)
library(rstan)
library(brms)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
```
之前我们讲了线性模型和混合线性模型,今天我们往前一步,应该说是一大步。因为这一步迈向了贝叶斯分析,与频率学派的分析有本质的区别,这种区别类似经典物理和量子物理的区别。
- 频率学派,是从数据出发
- 贝叶斯。先假定参数有一个分布,看到数据后,再重新分配可能性。
## 生活中的贝叶斯
事实上,贝叶斯在生活中应用很广泛,我们自觉和不自觉中都在使用贝叶斯分析。
## 贝叶斯公式
参数是假设,数据是证据。对于参数 $\theta$ 和数据 $D$,贝叶斯公式可以写为
$$
\underbrace{p(\theta|D)}_\text{posterior} \; = \; \underbrace{p(D|\theta)}_\text{likelihood} \;\; \underbrace{p(\theta)}_\text{prior} \;.
$$
## 三张图讲贝叶斯分析
```{r, eval=FALSE, include=FALSE}
df <- tibble(
alpha = rnorm(100, mean = 100, sd = 20),
beta = rnorm(100, mean = 4, sd = 2)
) %>%
rowwise() %>%
mutate(
set = list(tibble(
height = 0:30,
weight = alpha + beta * height
))
)
ggplot() +
map(
df$set,
~ geom_line(data = ., aes(x = height, y = weight), alpha = 0.2)
)
```
```{r bayes-three-panels-brms, eval=FALSE, include=FALSE}
# https://www.tjmahr.com/bayes-theorem-in-three-panels/
d <- tibble(
ids = 1:8,
bases = 100 * runif(8, .9, 1.1),
experience = c(1, 3, 6, 10, 14, 15, 21, 26),
raises = 2 * runif(8, .9, 1.1)
) %>% mutate(
salary = bases + experience * raises
)
d
d %>%
ggplot(aes(x = experience, y = salary)) +
geom_point()
## 看到数据之前,可能的曲线
## 在看到数据之前,我们认为这个系数,应该是某个值,且服从正态分布
fit_prior <- brm(
formula = salary ~ experience,
data = d,
prior = c(
prior(normal(100, 20), class = "Intercept"),
prior(normal(4, 2), class = "b")
),
iter = 2000,
chains = 4,
sample_prior = "only",
cores = 4,
control = list(adapt_delta = 0.9, max_treedepth = 13)
)
draws_prior <- d %>%
tidyr::expand(experience = 0:30) %>%
tidybayes::add_fitted_draws(fit_prior, n = 100)
p1 <-
ggplot(draws_prior) +
aes(x = experience, y = .value) +
geom_line(aes(group = .draw), alpha = .2) +
theme(
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank()
) +
ggtitle("看到数据之前,可能的曲线")
p1
## 每条曲线与数据匹配得怎么样?
## 哪条曲线与数据匹配的最好?其中拟合最好的那条,这就是lm()估计出的模型参数,
## Maximum likelihood estimate
fm1 <- lm(salary ~ experience, data = d)
new_data <- tibble(experience = 0:30) %>%
mutate(
fit = predict(fm1, newdata = .)
)
p2 <- ggplot(data = d) +
aes(x = experience, y = salary) +
geom_line(aes(y = fit), data = new_data, size = 1) +
geom_point(color = "#FB6542", size = 2) +
theme(
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank()
) +
ggtitle("曲线与数据匹配得怎么样")
p2
## 看到数据之后,可能的曲线
fit <- brm(
formula = salary ~ experience,
data = d,
prior = c(
prior(normal(100, 20), class = "Intercept"),
prior(normal(4, 2), class = "b")
),
iter = 2000,
chains = 4,
cores = 4,
control = list(adapt_delta = 0.9, max_treedepth = 13)
)
draws_posterior <- d %>%
tidyr::expand(experience = 0:30) %>%
tidybayes::add_fitted_draws(fit, n = 100)
draws_posterior
p3 <-
ggplot(draws_posterior) +
aes(x = experience, y = .value) +
geom_line(aes(group = .draw), alpha = .2) +
geom_point(
aes(y = salary),
color = "#FB6542", size = 2,
data = d
) +
theme(
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank()
) +
ggtitle("看到数据之后,可能的曲线")
p3
library(patchwork)
p1 + p2 + p3
ggsave("bayes-three-panels.png", width = 9, height = 3)
```
```{r bayes-three-panels-stan, eval=FALSE, include=FALSE}
# 用stan重新写一次
# 看到数据之前,可能的曲线
# 在看到数据之前,我们认为这个系数,应该是某个值,且服从正态分布
stan_program <- "
data {
int M;
vector[M] x;
}
parameters {
real alpha;
real beta;
real<lower=0> sigma;
}
model {
alpha ~ normal(100, 20);
beta ~ normal(4, 2);
//sigma ~ normal(0, 1);
}
generated quantities {
vector[M] y_fit;
//vector[M] y_rep;
for (i in 1:M)
y_fit[i] = alpha + beta * x[i]; // tidybayes::add_epred_draws or epred_draws
//y_rep[i] = normal_rng(alpha + beta * x[i], sigma); // tidybayes::predicted_draws or tidybayes::spread_draws or tidybayes::gather_draws
}
"
stan_data <- list(
M = 31,
x = 0:30
)
fit_normal01 <- stan(model_code = stan_program, data = stan_data)
p1 <- fit_normal01 %>%
tidybayes::gather_draws(y_fit[i], n = 100) %>%
ggplot(aes(x = i, y = .value)) +
geom_line(aes(group = .draw), alpha = .2) +
theme(
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank()
) +
ggtitle("看到数据之前,可能的曲线")
p1
## 曲线与数据匹配得怎么样?
## 哪条曲线与数据匹配的最好?
## Maximum likelihood estimate
fm1 <- lm(salary ~ experience, data = d)
new_data <- tibble(experience = 0:30) %>%
mutate(
fit = predict(fm1, newdata = .)
)
p2 <- ggplot(data = d) +
aes(x = experience, y = salary) +
geom_line(aes(y = fit), data = new_data, size = 1) +
geom_point(color = "#FB6542", size = 2) +
theme(
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank()
) +
ggtitle("曲线与数据匹配得怎么样")
p2
## 看到数据之后,可能的曲线
stan_program <- "
data {
int N;
vector[N] x;
vector[N] y;
int M;
vector[M] x_new;
}
parameters {
real alpha;
real beta;
real<lower=0> sigma;
}
model {
alpha ~ normal(100, 20);
beta ~ normal(4, 2);
sigma ~ normal(0, 1);
y ~ normal(alpha + beta * x, sigma);
}
generated quantities {
vector[M] y_fit;
for (i in 1:M)
y_fit[i] = alpha + beta * x_new[i]; // tidybayes::add_fitted_draws
//y_rep[i] = normal_rng(alpha + beta * x[i], sigma); // tidybayes::add_predict_draws
}
"
stan_data <- list(
N = nrow(d),
x = d$experience,
y = d$salary,
M = 31,
x_new = 0:30
)
fit_normal3 <- stan(model_code = stan_program, data = stan_data)
p3 <- fit_normal3 %>%
tidybayes::gather_draws(y_fit[i], n = 100) %>%
ggplot(aes(x = i, y = .value)) +
geom_line(aes(group = .draw), alpha = .2) +
geom_point(
aes(x = experience, y = salary),
color = "#FB6542", size = 2,
data = d
) +
theme(
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank()
) +
ggtitle("看到数据之后,可能的曲线")
p3
```
```{r bayes-02, out.width = '100%', echo = FALSE}
knitr::include_graphics("./images/bayes-three-panels.png")
```
- **第一张图**: 在看到数据之前,我们会去猜(如果你是专家,那就不能说是猜,而是叫合理假设),这个斜率可能是0.5, 1,1.5, 1.6, 2, 4, 4.5, 6,8....., 总之,我们不知道真实的值,只有去估计,或者认为这斜率应该在一个范围之内,在这个范围内,有些值的可能性大,有些值可能性较低。比如,认为这值游离在(1,8)范围,其中4左右的可能最大,两端的可能性最低。如果寻求用数学语言来描述,它符合正态分布的特征。(没有数据信息)
- **第二张图**: 每条曲线与数据匹配得怎么样? 很显然,有的直线拟合的很好,有的拟合的很差。其中 拟合最好的那条,这就是lm()估计出的模型参数。最大似然估计(这里没有考虑先验信息的)
- **第三张图**: 看到数据之后,可能的曲线。考虑先验和似然后,参数处在高密度区间的曲线们。
观察到数据点后,我们认为服从线性模型,这个线性模型不是一条直线,而是很多条,有些线的可能性大,有些线的可能性低,但都是有可能的。那么,综合这些有可能的线,(截距和斜率)构成了一种分布,即**后验概率分布**。
因为我们是R语言课,我们跳过很多理论推导。事实上,我在学习贝叶斯数据分析的时候,也是先从代码操作人手,然后理解贝叶斯推断相关理论,有时候更直观更容易理解。当然,我不是说我的方法一定正确,只是供大家的一个选项。我会用到brms和Stan,但我个人更喜欢Stan.
## 线性模型
从最简单的线性模式开始
$$
y_n = \alpha + \beta x_n + \epsilon_n \quad \text{where}\quad
\epsilon_n \sim \operatorname{normal}(0,\sigma).
$$
等价于
$$
y_n - (\alpha + \beta X_n) \sim \operatorname{normal}(0,\sigma),
$$
进一步等价
$$
y_n \sim \operatorname{normal}(\alpha + \beta X_n, \, \sigma).
$$
```{r bayes-simuate, eval=FALSE}
alpha_real <- 10
beta_real <- 3
sigma_real <- 2
df <- tibble(
x = runif(30, 1, 8),
y = rnorm(30, alpha_real + beta_real * x, sd = sigma_real)
)
```
```{r bayes-03, eval=FALSE}
stan_program <- "
data {
int<lower=0> N;
vector[N] x;
vector[N] y;
}
parameters {
real alpha;
real beta;
real<lower=0> sigma;
}
model {
y ~ normal(alpha + beta * x, sigma);
}
generated quantities {
vector[N] y_rep;
for (n in 1:N)
y_rep[n] = normal_rng(alpha + beta * x[n], sigma);
}
"
stan_data <- df %>%
tidybayes::compose_data(
N = nrow(.),
x = x,
y = y
)
fit_normal <- stan(model_code = stan_program, data = stan_data)
```
```{r include=FALSE}
# 运行stan代码,导致渲染bookdown报错,不知道为什么,先用这边笨办法凑合吧
#
#save(fit_normal,
# stan_data,
# alpha_real,
# beta_real,
# sigma_real,
# file = here::here("stan", "stan_data_normal.Rdata")
# )
load(here::here("stan", "stan_data_normal.Rdata"))
```
### 模型输出
```{r bayes-04}
fit_normal
```
### 模型评估
```{r bayes-05}
rstan::traceplot(fit_normal, pars = c("alpha", "beta", "sigma"))
```
```{r, eval=FALSE}
rstan::extract(fit_normal, par = c("alpha", "beta"))
rstan::extract(fit_normal, par = "alpha")$alpha
rstan::extract(fit_normal, par = "beta")$beta
```
```{r bayes-06, eval=FALSE}
fit_normal %>%
tidybayes::gather_draws(alpha, beta) %>%
ggplot(aes(x = .value, y = as_factor(.variable)) ) +
ggdist::stat_halfeye() +
geom_vline(xintercept = c(alpha_real, beta_real))
```
事实上,`bayesplot`宏包提供了大量模型评估函数,大爱!!
```{r bayes-07, message=FALSE, results=FALSE}
true_alpha_beta <- c(alpha_real, beta_real, sigma_real)
posterior_alpha_beta <-
as.matrix(fit_normal, pars = c('alpha','beta', 'sigma'))
bayesplot::mcmc_recover_hist(posterior_alpha_beta, true = true_alpha_beta)
```
```{r bayes-08}
y_rep <- as.matrix(fit_normal, pars = "y_rep")
bayesplot::ppc_dens_overlay(y = stan_data$y, yrep = y_rep[1:200, ])
```
```{r bayes-09}
y_rep <- as.matrix(fit_normal, pars = "y_rep")
bayesplot::ppc_intervals(y = stan_data$y, yrep = y_rep, x = stan_data$x)
```
## bayesian workflow
## 参考资料
- https://mc-stan.org/
- https://github.com/jgabry/bayes-workflow-book
- https://github.com/XiangyunHuang/masr/
- https://github.com/ASKurz/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse_2_ed/
- 《Regression and Other Stories》, Andrew Gelman, Cambridge University Press. 2020
- 《A Student's Guide to Bayesian Statistics》, Ben Lambert, 2018
- 《Statistical Rethinking: A Bayesian Course with Examples in R and STAN》 ( 2nd Edition), by Richard McElreath, 2020
- 《Bayesian Data Analysis》, Third Edition, 2013
- 《Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan》 (2nd Edition) John Kruschke, 2014
- 《Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan》, Joseph M. Hilbe, Cambridge University Press, 2017
```{r bayes-20, echo = F}
# remove the objects
# ls() %>% stringr::str_flatten(collapse = ", ")
rm(fit_normal, y_rep, stan_data, alpha_real, beta_real, sigma_real,posterior_alpha_beta, true_alpha_beta)
```
```{r bayes-21, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```