-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweighted_lm.Rmd
193 lines (125 loc) · 3.95 KB
/
weighted_lm.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# 有权重的概率密度函数 {#weighted}
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
```
## Probability density function
<https://mc-stan.org/docs/2_26/functions-reference/normal-distribution.html>
$$
\text{Normal}(y|\mu,\sigma) = \frac{1}{\sqrt{2 \pi} \
\sigma} \exp\left( - \, \frac{1}{2} \left( \frac{y -
\mu}{\sigma} \right)^2 \right)
$$
## normal_lpdf
$$
\begin{align}
\mathtt{normal\_lpdf(y | mu, sigma)} &= \log \frac{1}{\sqrt{2 \pi}\sigma}
- \frac{1}{2} \left( \frac{y -\mu}{\sigma} \right)^2 \\
& = - \frac{1}{2} \log (2 \pi \sigma^2) - \frac{1}{2} \left( \frac{y -\mu}{\sigma} \right)^2 \\
& = - \frac{1}{2} \Big[\log (2 \pi \sigma^2) + \left( \frac{y -\mu}{\sigma} \right)^2 \Big] \\
\end{align}
$$
## stan code for normal_lpdf
```{stan}
functions {
vector pw_norm(vector y, vector mu, real sigma) {
return -0.5 * ( log(2 * pi() * square(sigma)) + square((y - mu) / sigma) );
}
}
```
## 带有权重的normal_lpdf
为了加入权重,我们需要在`normal_lpdf`累加前给`likelihood`赋予**权重**,具体来说,这里有一个长度为N的向量包含着`normal_lpdf`值,然后乘以相同长度的权重向量。
```{stan}
functions {
vector pw_norm(vector y, vector mu, real sigma) {
return -0.5 * ( log(2 * pi() * square(sigma)) + square((y - mu) / sigma) );
}
}
model {
// log-likelihood
// target += normal_lpdf(y | mu, sigma);
// weighted log-likelihood
target += dot_product(weights, pw_norm(y, mu, sigma));
}
```
## 数据模拟
```{r}
set.seed(20190417)
N.sim <- 10000L ### num. observations
K.sim <- 5L ### num. predictors
x.sim <- cbind( ### model matrix
rep(1, N.sim),
matrix(rnorm(N.sim * (K.sim - 1)), N.sim, (K.sim - 1))
)
beta.sim <- rnorm(K.sim, 0, 10) ### coef. vector
sigma.sim <- abs(rcauchy(1, 0, 5)) ### scale parameter
mu.sim <- x.sim %*% beta.sim ### linear prediction
y.sim <- rnorm(N.sim, mu.sim, sigma.sim) ### simulated outcome
weights <- sample(c(0,1), N.sim, replace = TRUE)
stan_data <- list(
N = N.sim,
K = K.sim,
x = x.sim,
y = y.sim,
weights = weights
)
```
## stan模型
```{r, warning=FALSE, message=FALSE}
stan_program <- '
//
// This Stan program defines a simple model, with a
// vector of values y modeled as normally distributed
// with mean mu and standard deviation sigma.
//
// Learn more about model development with Stan at:
//
// http://mc-stan.org/users/interfaces/rstan.html
// https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
//
functions {
vector pw_norm(vector y, vector mu, real sigma) {
return -0.5 * (log(2 * pi() * square(sigma)) +
square((y - mu) / sigma));
}
}
data {
int<lower=1> N; // num. observations
int<lower=1> K; // num. predictors
matrix[N, K] x; // model matrix
vector[N] y; // outcome vector
vector<lower=0>[N] weights; // weights
}
parameters {
vector[K] beta; // coef vector
real<lower=0> sigma; // scale parameter
}
transformed parameters {
vector[N] mu; // declare
mu = x * beta; // assign
}
model {
// priors
beta ~ normal(0, 10); // priors for beta
sigma ~ cauchy(0, 5); // prior for sigma
// log-likelihood
//target += normal_lpdf(y | mu, sigma);
// weighted log-likelihood
target += dot_product(weights, pw_norm(y, mu, sigma));
}
'
mod <- stan(model_code = stan_program, data = stan_data)
```
## 看恢复的如何
```{r}
print(mod, pars = c("beta", "sigma"))
```
```{r}
true.pars <- c(beta.sim, sigma.sim)
names(true.pars) <- c(paste0("beta[", 1:5, "]"), "sigma")
round(true.pars, 2L)
```
## 参考
- <https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/applied-bayesian-statistics/>