-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCameraViewModel.swift
477 lines (383 loc) · 17.9 KB
/
CameraViewModel.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import SwiftUI
import Vision
import CoreImage
import CoreImage.CIFilterBuiltins
import Accelerate
@MainActor
class CameraViewModel: ObservableObject {
struct AccuracyStatus {
enum Kind {
case insufficient
case low
case good
case excellent
}
var value: Float32
var kind: Kind {
switch self.value {
case 0..<2: return .insufficient
case 2..<4: return .low
case 4..<7: return .good
default: return .excellent
}
}
}
// MARK: Controllable properties
@ObservedObject var camera: Camera
// MARK: Results
fileprivate(set) var fullPreviewImage: Image?
fileprivate(set) var measurementAreaImage: Image?
fileprivate(set) var greenChannelHistory: [(green: Float32, date: Date)] = []
fileprivate(set) var lastTransform: [(bpm: Float32, intensity: Float32)] = []
fileprivate(set) var averagedTransform: [(bpm: Float32, intensity: Float32)] = []
fileprivate(set) var bpmHistory: [(bpm: Float32, date: Date)] = []
fileprivate(set) var accuracyStatus: AccuracyStatus? = nil
fileprivate(set) var faceObservation: VNFaceObservation?
// TODO: General measurement status...
// MARK: Static and constant properties
static let FFT_SAMPLE_COUNT = 512
static private let FFT_SAMPLE_COUNT_LOG2: vDSP_Length = 9
private let fft: vDSP.FFT<DSPSplitComplex>
private let hannWindow = vDSP.window(ofType: Float32.self, usingSequence: .hanningNormalized, count: FFT_SAMPLE_COUNT, isHalfWindow: false)
private let sequenceRequestHandler = VNSequenceRequestHandler()
// MARK: Internal variables
private var samples: [Float32] = []
private var rawBpmHistory: [(value: Float32, stdDevInverse: Float32)] = []
private var faceTrackingRequest: VNTrackObjectRequest?
private var faceDetectionRunning = false
private var measurementRects: [CGRect] = []
private var spectrumHistory: [[Float32]] = []
// MARK: Initialisation and deinitialisation
init() {
self.fft = vDSP.FFT.init(log2n: Self.FFT_SAMPLE_COUNT_LOG2, radix: .radix2, ofType: DSPSplitComplex.self)!
self.camera = Camera()
// Sampling task.
Timer.scheduledTimer(withTimeInterval: 1.0/30.0, repeats: true) { timer in
Task {
await self.sampleTask()
}
}
// Face detection/tracking task.
Timer.scheduledTimer(withTimeInterval: 1.0/100.0, repeats: true) { timer in
Task {
await self.faceDetectionTask()
await self.faceTrackingTask()
}
}
// FFT task.
Timer.scheduledTimer(withTimeInterval: 1.0/10.0, repeats: true) { timer in
Task {
await self.fftTask()
}
}
// BPM task.
Timer.scheduledTimer(withTimeInterval: 1.0/10.0, repeats: true) { timer in
Task {
await self.bpmTask()
}
Task { @MainActor in
self.objectWillChange.send()
}
}
}
// MARK: Tasks
private func sampleTask() {
guard let previewImage = self.camera.latestImage else { return }
guard let faceTrackingRequest else {
print("Sampling failed due to face tracking request missing.")
let finalPreviewImage = previewImage.image
Task { @MainActor in
self.fullPreviewImage = finalPreviewImage
}
return
}
// Calculate brightness of the green channel in the measurement area.
Task.detached(priority: .high) {
// Crop face image.
let faceCroppingRect = faceTrackingRequest.inputObservation
.boundingBox.normalize(with: previewImage.extent.size)
// Crop the measurement area.
let croppingRect = CGRect(center: CGPoint(x: 0.5, y: 0.2), size: CGSize(width: 1.0, height: 0.4))
.normalize(with: faceCroppingRect.size)
.offsetBy(dx: faceCroppingRect.minX, dy: faceCroppingRect.minY)
var measurementRects = await self.measurementRects
measurementRects.append(croppingRect)
let finalMeasurementRects = Array(measurementRects.suffix(120))
let averagedCroppingRect = measurementRects.reduce(CGRect.zero, {
$0.sumCoordinates(with: $1)
}).divideCoordinates(by: CGFloat(measurementRects.count))
let measurementImage = previewImage.cropped(to: averagedCroppingRect)
// Sample image.
let sample = await self.calculateBrightness(in: measurementImage)
// Prepare data.
var samples = await self.samples
samples.append(sample)
let trimmedSamples = Array(samples.suffix(Self.FFT_SAMPLE_COUNT))
var greenChannelHistory = await self.greenChannelHistory
greenChannelHistory.append((sample, .now))
let trimmedGreenChannelHistory = Array(greenChannelHistory.suffix(Self.FFT_SAMPLE_COUNT))
let finalPreviewImage = previewImage.image
let finalMeasurementImage = measurementImage.image
// Update data.
Task { @MainActor in
self.samples = trimmedSamples
self.greenChannelHistory = trimmedGreenChannelHistory
self.fullPreviewImage = finalPreviewImage
self.measurementAreaImage = finalMeasurementImage
self.measurementRects = finalMeasurementRects
}
}
}
private func faceDetectionTask() {
guard self.faceTrackingRequest == nil,
self.faceDetectionRunning == false,
let fullImage = self.camera.latestImage else {
return
}
// No need to detach: self.detectFace is detached internally.
Task(priority: .high) {
if self.faceDetectionRunning == false {
self.faceDetectionRunning = true
self.faceTrackingRequest = await self.detectFace(in: fullImage)
faceDetectionRunning = false
}
}
}
private func faceTrackingTask() {
guard let previewImage = self.camera.latestImage else { return }
Task {
await self.trackFace(in: previewImage)
}
}
private func fftTask() {
Task.detached(priority: .medium) {
// Transform.
let transform = await self.computeFFT(on: self.samples)
let fftResult = await self.zipFrequencies(with: transform)
Task { @MainActor in
self.lastTransform = fftResult
}
}
}
private func bpmTask() {
Task.detached(priority: .high) {
let data = await self.samples
let average = vDSP.sum(data) / Float32(data.count)
let averageVector = Array(repeating: average, count: data.count)
let dataMinusAverage = vDSP.subtract(data, averageVector)
let invertedStandardDeviation = 1.0 / sqrt(vDSP.sumOfSquares(dataMinusAverage) / Float32(data.count))
let fftResult = await self.lastTransform.map({ point in
point.intensity
})
let frequencies = await self.lastTransform.map({ point in
point.bpm
})
guard fftResult.count > 0 else { return }
var history = await self.spectrumHistory
history.append(vDSP.multiply(invertedStandardDeviation, fftResult))
let trimmedHistory = Array(history.suffix(200))
Task { @MainActor in
self.spectrumHistory = trimmedHistory
}
var averageSpectrum = Array(repeating: Float32(0.0), count: fftResult.count)
for vec in trimmedHistory {
averageSpectrum = vDSP.add(averageSpectrum, vec)
}
averageSpectrum = vDSP.multiply(1.0/Float32(history.count), averageSpectrum)
let zippedAverage = averageSpectrum.enumerated().map { spectrumPoint in
(bpm: frequencies[spectrumPoint.offset], intensity: spectrumPoint.element)
}
let bpm = zippedAverage.max(by: { a, b in
a.intensity < b.intensity
})?.bpm
// Update BPM history atomically.
var newBpmHistory = await self.bpmHistory
if let bpm {
var rawBpmHistory = await self.rawBpmHistory
rawBpmHistory.append((bpm, invertedStandardDeviation))
let finalRawBpmHistory = Array(rawBpmHistory.suffix(100))
Task { @MainActor in
self.rawBpmHistory = finalRawBpmHistory
}
let bpmChannel = rawBpmHistory.map { point in
point.value
}
let stdDevChannel = rawBpmHistory.map { point in
point.stdDevInverse
}
let clippedStdDev = vDSP.clip(stdDevChannel, to: 0...5)
let weighedAverageBpm = vDSP.dot(bpmChannel, clippedStdDev) / vDSP.sum(clippedStdDev)
newBpmHistory.append((weighedAverageBpm, Date.now))
Task { @MainActor in
if let accuracy = stdDevChannel.last {
self.accuracyStatus = AccuracyStatus(value: accuracy)
} else {
self.accuracyStatus = nil
}
}
}
let finalBpmHistory = newBpmHistory.filter({ item in
item.date.addingTimeInterval(60) > .now
})
Task { @MainActor in
self.averagedTransform = zippedAverage
self.bpmHistory = finalBpmHistory
}
}
}
// MARK: Signal utilities
private func calculateBrightness(in image: CIImage) async -> Float32 {
await withUnsafeContinuation { continuation in
Task.detached {
let width = Int(image.extent.width)
let height = Int(image.extent.height)
let context = CIContext()
var bitmap = Data(count: width * height * 4)
bitmap.withUnsafeMutableBytes { bitmapPtr in
context.render(image, toBitmap: bitmapPtr.baseAddress!, rowBytes: width * 4, bounds: image.extent, format: .RGBA8, colorSpace: nil)
}
let array = bitmap.withUnsafeBytes { (ptr: UnsafeRawBufferPointer) -> [UInt8] in
let buffer = ptr.bindMemory(to: UInt8.self)
return [UInt8](buffer)
}
let floatArray = [Float32](unsafeUninitializedCapacity: array.count) { buffer, initializedCount in
vDSP.convertElements(of: array, to: &buffer)
initializedCount = array.count
}
let decimated = vDSP.downsample(floatArray, decimationFactor: 4, filter: [0.0, 1.0, 0.0, 0.0])
let average = vDSP.sum(decimated) / Float32(array.count)
continuation.resume(returning: average)
}
}
}
private func computeFFT(on samples: [Float32]) -> [Float32] {
guard samples.count == Self.FFT_SAMPLE_COUNT else {
return []
}
let windowedSamples = vDSP.multiply(samples, self.hannWindow)
let count = Self.FFT_SAMPLE_COUNT / 2
let magnitudes = [Float](unsafeUninitializedCapacity: count + 1) {
buffer, initializedCount in
var realParts = [Float](repeating: 0, count: count)
var imagParts = [Float](repeating: 0, count: count)
realParts.withUnsafeMutableBufferPointer { realPtr in
imagParts.withUnsafeMutableBufferPointer { imagPtr in
var complexSignal = DSPSplitComplex(realp: realPtr.baseAddress!,
imagp: imagPtr.baseAddress!)
windowedSamples.withUnsafeBytes {
vDSP.convert(interleavedComplexVector: [DSPComplex]($0.bindMemory(to: DSPComplex.self)),
toSplitComplexVector: &complexSignal)
}
fft.forward(input: complexSignal,
output: &complexSignal)
vDSP.squareMagnitudes(complexSignal,
result: &buffer)
}
}
buffer[0] = realParts[0]
buffer[count] = imagParts[0]
initializedCount = count + 1
}
let decibels = vDSP.amplitudeToDecibels(magnitudes, zeroReference: 10)
return decibels
}
private func zipFrequencies(with values: [Float32], fps: Float32 = 30.0) -> [(bpm: Float32, intensity: Float32)] {
return [(bpm: Float32, intensity: Float32)](unsafeUninitializedCapacity: values.count) { buffer, initializedCount in
let minimumIndex: Int = 50 * Self.FFT_SAMPLE_COUNT / (Int(fps) * 60)
let maximumIndex: Int = 100 * Self.FFT_SAMPLE_COUNT / (Int(fps) * 60)
guard values.startIndex <= minimumIndex,
values.endIndex >= maximumIndex else {
return
}
let filteredValues = values[minimumIndex...maximumIndex]
for (transformIndex, intensity) in filteredValues.enumerated() {
let bpm = Float32(minimumIndex + transformIndex) * fps * 60.0 / Float32(Self.FFT_SAMPLE_COUNT)
buffer[initializedCount] = (bpm, intensity)
initializedCount += 1
}
}
}
// MARK: Face detection and tracking
/// This function performs an initial face detection on an image.
///
/// - Parameter image: The image on which detection is performed.
/// - Returns: A tracking request for the detected face.
private func detectFace(in image: CIImage) async -> VNTrackObjectRequest? {
await withUnsafeContinuation { continuation in
Task.detached(priority: .medium) {
let faceDetectionRequest = VNDetectFaceRectanglesRequest { request, error in
guard error == nil else {
continuation.resume(returning: .none)
return
}
guard let faceDetectionRequest = request as? VNDetectFaceRectanglesRequest,
let results = faceDetectionRequest.results,
let face = results.first else {
continuation.resume(returning: .none)
return
}
continuation.resume(returning: VNTrackObjectRequest(detectedObjectObservation: face))
}
let imageRequestHandler = VNImageRequestHandler(ciImage: image)
try? imageRequestHandler.perform([faceDetectionRequest])
}
}
}
private func trackFace(in image: CIImage) async {
guard let faceTrackingRequest else { return }
Task.detached {
try? self.sequenceRequestHandler.perform([faceTrackingRequest], on: image)
Task { @MainActor in
guard let result = faceTrackingRequest.results?.first as? VNDetectedObjectObservation else {
self.faceTrackingRequest = nil
return
}
if result.confidence > 0.3 {
self.faceTrackingRequest?.inputObservation = result
} else {
self.faceTrackingRequest = nil
}
}
}
}
}
// MARK: Useful CIImage extension
extension CIImage {
var image: Image? {
let ciContext = CIContext()
guard let cgImage = ciContext.createCGImage(self, from: self.extent) else { return nil }
return Image(decorative: cgImage, scale: 1, orientation: .up)
}
}
// MARK: Useful CGRect extension
extension CGRect {
init(center: CGPoint, size: CGSize) {
self = CGRect(x: center.x - size.width / 2, y: center.y - size.height / 2, width: size.width, height: size.height)
}
func normalize(with size: CGSize) -> Self {
return CGRect(
x: self.minX * size.width,
y: self.minY * size.height,
width: self.width * size.width,
height: self.height * size.height
)
}
func sumCoordinates(with other: CGRect) -> CGRect {
return CGRect(x: self.minX + other.minX,
y: self.minY + other.minY,
width: self.width + other.width,
height: self.height + other.height)
}
func divideCoordinates(by divider: CGFloat) -> CGRect {
return CGRect(x: self.minX / divider,
y: self.minY / divider,
width: self.width / divider,
height: self.height / divider)
}
}
class FakeCameraViewModel: CameraViewModel {
override init() {
super.init()
self.camera = FakeCamera()
}
}