This repository has been archived by the owner on Apr 7, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviz_utils.py
546 lines (428 loc) · 20.1 KB
/
viz_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
"""
Taken from https://github.com/microsoft/CameraTraps/blob/9274b2b2c3b7675341c9d065d1782fc74c428943/visualization/visualization_utils.py
"""
#%% Constants and imports
from io import BytesIO
from typing import Union
import matplotlib.pyplot as plt
import numpy as np
import requests
from PIL import Image, ImageFile, ImageFont, ImageDraw
import annotation_constants
ImageFile.LOAD_TRUNCATED_IMAGES = True
#%% Functions
def open_image(input_file: Union[str, BytesIO]) -> Image.Image:
"""Opens an image in binary format using PIL.Image and converts to RGB mode.
This operation is lazy; image will not be actually loaded until the first
operation that needs to load it (for example, resizing), so file opening
errors can show up later.
Args:
input_file: str or BytesIO, either a path to an image file (anything
that PIL can open), or an image as a stream of bytes
Returns:
an PIL image object in RGB mode
"""
if (isinstance(input_file, str)
and input_file.startswith(('http://', 'https://'))):
try:
response = requests.get(input_file)
image = Image.open(BytesIO(response.content))
except Exception as e:
print('Error opening image {}: {}'.format(input_file,str(e)))
raise
else:
image = Image.open(input_file)
if image.mode not in ('RGBA', 'RGB', 'L'):
raise AttributeError(
f'Image {input_file} uses unsupported mode {image.mode}')
if image.mode == 'RGBA' or image.mode == 'L':
# PIL.Image.convert() returns a converted copy of this image
image = image.convert(mode='RGB')
return image
def load_image(input_file: Union[str, BytesIO]) -> Image.Image:
"""Loads the image at input_file as a PIL Image into memory.
Image.open() used in open_image() is lazy and errors will occur downstream
if not explicitly loaded.
Args:
input_file: str or BytesIO, either a path to an image file (anything
that PIL can open), or an image as a stream of bytes
Returns: PIL.Image.Image, in RGB mode
"""
image = open_image(input_file)
image.load()
return image
def resize_image(image, target_width, target_height=-1):
"""
Resizes a PIL image object to the specified width and height; does not resize
in place. If either width or height are -1, resizes with aspect ratio preservation.
If both are -1, returns the original image (does not copy in this case).
"""
# Null operation
if target_width == -1 and target_height == -1:
return image
elif target_width == -1 or target_height == -1:
# Aspect ratio as width over height
# ar = w / h
aspect_ratio = image.size[0] / image.size[1]
if target_width != -1:
# h = w / ar
target_height = int(target_width / aspect_ratio)
else:
# w = ar * h
target_width = int(aspect_ratio * target_height)
resized_image = image.resize((target_width, target_height), Image.ANTIALIAS)
return resized_image
def show_images_in_a_row(images):
num = len(images)
assert num > 0
if isinstance(images[0], str):
images = [Image.open(img) for img in images]
fig, axarr = plt.subplots(1, num, squeeze=False) # number of rows, number of columns
fig.set_size_inches((num * 5, 25)) # each image is 2 inches wide
for i, img in enumerate(images):
axarr[0, i].set_axis_off()
axarr[0, i].imshow(img)
return fig
# The following three functions are modified versions of those at:
# https://github.com/tensorflow/models/blob/master/research/object_detection/utils/visualization_utils.py
# none animal person vehicle/other
COLORS = ['#1b1c1d', '#21ba45', '#6435c9', '#a5673f']
def crop_image(detections, image, confidence_threshold=0.8, expansion=0):
"""
Crops detections above *confidence_threshold* from the PIL image *image*,
returning a list of PIL images.
*detections* should be a list of dictionaries with keys 'conf' and 'bbox';
see bbox format description below. Normalized, [x,y,w,h], upper-left-origin.
*expansion* specifies a number of pixels to include on each side of the box.
"""
ret_images = []
for detection in detections:
score = float(detection['conf'])
if score >= confidence_threshold:
x1, y1, w_box, h_box = detection['bbox']
ymin,xmin,ymax,xmax = y1, x1, y1 + h_box, x1 + w_box
# Convert to pixels so we can use the PIL crop() function
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
if expansion > 0:
left -= expansion
right += expansion
top -= expansion
bottom += expansion
# PIL's crop() does surprising things if you provide values outside of
# the image, clip inputs
left = max(left,0); right = max(right,0)
top = max(top,0); bottom = max(bottom,0)
left = min(left,im_width-1); right = min(right,im_width-1)
top = min(top,im_height-1); bottom = min(bottom,im_height-1)
ret_images.append(image.crop((left, top, right, bottom)))
# ...if this detection is above threshold
# ...for each detection
return ret_images
def render_detection_bounding_boxes(detections, image,
label_map={},
classification_label_map={},
confidence_threshold=0.8, thickness=10, expansion=0,
classification_confidence_threshold=0.3,
max_classifications=3):
"""
Renders bounding boxes, label, and confidence on an image if confidence is above the threshold.
This works with the output of the batch processing API.
Supports classification, if the detection contains classification results according to the
API output version 1.0.
Args:
detections: detections on the image, example content:
[
{
"category": "2",
"conf": 0.996,
"bbox": [
0.0,
0.2762,
0.1234,
0.2458
]
}
]
...where the bbox coordinates are [x, y, box_width, box_height].
(0, 0) is the upper-left. Coordinates are normalized.
Supports classification results, if *detections* have the format
[
{
"category": "2",
"conf": 0.996,
"bbox": [
0.0,
0.2762,
0.1234,
0.2458
]
"classifications": [
["3", 0.901],
["1", 0.071],
["4", 0.025]
]
}
]
image: PIL.Image object, output of generate_detections.
label_map: optional, mapping the numerical label to a string name. The type of the numerical label
(default string) needs to be consistent with the keys in label_map; no casting is carried out.
classification_label_map: optional, mapping of the string class labels to the actual class names.
The type of the numerical label (default string) needs to be consistent with the keys in
label_map; no casting is carried out.
confidence_threshold: optional, threshold above which the bounding box is rendered.
thickness: line thickness in pixels. Default value is 4.
expansion: number of pixels to expand bounding boxes on each side. Default is 0.
classification_confidence_threshold: confidence above which classification result is retained.
max_classifications: maximum number of classification results retained for one image.
image is modified in place.
"""
display_boxes = []
display_strs = [] # list of lists, one list of strings for each bounding box (to accommodate multiple labels)
classes = [] # for color selection
for detection in detections:
score = detection['conf']
if score >= confidence_threshold:
x1, y1, w_box, h_box = detection['bbox']
display_boxes.append([y1, x1, y1 + h_box, x1 + w_box])
clss = detection['category']
label = label_map[clss] if clss in label_map else clss
displayed_label = ['{}: {}%'.format(label, round(100 * score))]
if 'classifications' in detection:
# To avoid duplicate colors with detection-only visualization, offset
# the classification class index by the number of detection classes
clss = annotation_constants.NUM_DETECTOR_CATEGORIES + int(detection['classifications'][0][0])
classifications = detection['classifications']
if len(classifications) > max_classifications:
classifications = classifications[0:max_classifications]
for classification in classifications:
p = classification[1]
if p < classification_confidence_threshold:
continue
class_key = classification[0]
if class_key in classification_label_map:
class_name = classification_label_map[class_key]
else:
class_name = class_key
displayed_label += ['{}: {:5.1%}'.format(class_name.lower(), classification[1])]
# ...if we have detection results
display_strs.append(displayed_label)
classes.append(clss)
# ...if the confidence of this detection is above threshold
# ...for each detection
display_boxes = np.array(display_boxes)
draw_bounding_boxes_on_image(image, display_boxes, classes,
display_strs=display_strs, thickness=thickness, expansion=expansion)
def draw_bounding_boxes_on_image(image,
boxes,
classes,
thickness=4,
expansion=0,
display_strs=()):
"""
Draws bounding boxes on an image.
Args:
image: a PIL.Image object.
boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
The coordinates are in normalized format between [0, 1].
classes: a list of ints or strings (that can be cast to ints) corresponding to the class labels of the boxes.
This is only used for selecting the color to render the bounding box in.
thickness: line thickness in pixels. Default value is 4.
expansion: number of pixels to expand bounding boxes on each side. Default is 0.
display_strs: list of list of strings.
a list of strings for each bounding box.
The reason to pass a list of strings for a
bounding box is that it might contain
multiple labels.
"""
boxes_shape = boxes.shape
if not boxes_shape:
return
if len(boxes_shape) != 2 or boxes_shape[1] != 4:
# print('Input must be of size [N, 4], but is ' + str(boxes_shape))
return # no object detection on this image, return
for i in range(boxes_shape[0]):
if display_strs:
display_str_list = display_strs[i]
draw_bounding_box_on_image(image,
boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3],
classes[i],
thickness=thickness, expansion=expansion,
display_str_list=display_str_list)
def draw_bounding_box_on_image(image,
ymin,
xmin,
ymax,
xmax,
clss=None,
thickness=10,
expansion=0,
display_str_list=(),
use_normalized_coordinates=True,
label_font_size=34):
"""
Adds a bounding box to an image.
Bounding box coordinates can be specified in either absolute (pixel) or
normalized coordinates by setting the use_normalized_coordinates argument.
Each string in display_str_list is displayed on a separate line above the
bounding box in black text on a rectangle filled with the input 'color'.
If the top of the bounding box extends to the edge of the image, the strings
are displayed below the bounding box.
Args:
image: a PIL.Image object.
ymin: ymin of bounding box - upper left.
xmin: xmin of bounding box.
ymax: ymax of bounding box.
xmax: xmax of bounding box.
clss: str, the class of the object in this bounding box - will be cast to an int.
thickness: line thickness. Default value is 4.
expansion: number of pixels to expand bounding boxes on each side. Default is 0.
display_str_list: list of strings to display in box
(each to be shown on its own line).
use_normalized_coordinates: If True (default), treat coordinates
ymin, xmin, ymax, xmax as relative to the image. Otherwise treat
coordinates as absolute.
label_font_size: font size to attempt to load arial.ttf with
"""
if clss is None:
color = COLORS[1]
else:
color_idx = len(COLORS)-1 if int(clss) >= len(COLORS) else int(clss)
color = COLORS[color_idx]
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
if use_normalized_coordinates:
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
else:
(left, right, top, bottom) = (xmin, xmax, ymin, ymax)
if expansion > 0:
left -= expansion
right += expansion
top -= expansion
bottom += expansion
# Deliberately trimming to the width of the image only in the case where
# box expansion is turned on. There's not an obvious correct behavior here,
# but the thinking is that if the caller provided an out-of-range bounding
# box, they meant to do that, but at least in the eyes of the person writing
# this comment, if you expand a box for visualization reasons, you don't want
# to end up with part of a box.
#
# A slightly more sophisticated might check whether it was in fact the expansion
# that made this box larger than the image, but this is the case 99.999% of the time
# here, so that doesn't seem necessary.
left = max(left,0); right = max(right,0)
top = max(top,0); bottom = max(bottom,0)
left = min(left,im_width-1); right = min(right,im_width-1)
top = min(top,im_height-1); bottom = min(bottom,im_height-1)
draw.line([(left, top), (left, bottom), (right, bottom),
(right, top), (left, top)], width=thickness, fill=color)
try:
font = ImageFont.truetype('arial.ttf', label_font_size)
except IOError:
font = ImageFont.load_default()
# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = bottom + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle(
[(left, text_bottom - text_height - 2 * margin), (left + text_width,
text_bottom)],
fill=color)
draw.text(
(left + margin, text_bottom - text_height - margin),
display_str,
fill='black',
font=font)
text_bottom -= (text_height + 2 * margin)
def render_iMerit_boxes(boxes, classes, image,
label_map=annotation_constants.annotation_bbox_category_id_to_name):
"""
Renders bounding boxes and their category labels on a PIL image.
Args:
boxes: bounding box annotations from iMerit, format is [x_rel, y_rel, w_rel, h_rel] (rel = relative coords)
classes: the class IDs of the predicted class of each box/object
image: PIL.Image object to annotate on
label_map: optional dict mapping classes to a string for display
Returns:
image will be altered in place
"""
display_boxes = []
display_strs = [] # list of list, one list of strings for each bounding box (to accommodate multiple labels)
for box, clss in zip(boxes, classes):
x_rel, y_rel, w_rel, h_rel = box
ymin, xmin = y_rel, x_rel
ymax = ymin + h_rel
xmax = xmin + w_rel
display_boxes.append([ymin, xmin, ymax, xmax])
if label_map:
clss = label_map[int(clss)]
display_strs.append([clss])
display_boxes = np.array(display_boxes)
draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs)
def render_megadb_bounding_boxes(boxes_info, image):
"""
Args:
boxes_info: list of dict, each dict represents a single detection
{
"category": "animal",
"bbox": [
0.739,
0.448,
0.187,
0.198
]
}
where bbox coordinates are normalized [x_min, y_min, width, height]
image: PIL.Image.Image, opened image
"""
display_boxes = []
display_strs = []
classes = [] # ints, for selecting colors
for b in boxes_info:
x_min, y_min, w_rel, h_rel = b['bbox']
y_max = y_min + h_rel
x_max = x_min + w_rel
display_boxes.append([y_min, x_min, y_max, x_max])
display_strs.append([b['category']])
classes.append(annotation_constants.detector_bbox_category_name_to_id[b['category']])
display_boxes = np.array(display_boxes)
draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs)
def render_db_bounding_boxes(boxes, classes, image, original_size=None,
label_map=None, thickness=4, expansion=0):
"""
Render bounding boxes (with class labels) on [image]. This is a wrapper for
draw_bounding_boxes_on_image, allowing the caller to operate on a resized image
by providing the original size of the image; bboxes will be scaled accordingly.
"""
display_boxes = []
display_strs = []
if original_size is not None:
image_size = original_size
else:
image_size = image.size
img_width, img_height = image_size
for box, clss in zip(boxes, classes):
x_min_abs, y_min_abs, width_abs, height_abs = box
ymin = y_min_abs / img_height
ymax = ymin + height_abs / img_height
xmin = x_min_abs / img_width
xmax = xmin + width_abs / img_width
display_boxes.append([ymin, xmin, ymax, xmax])
if label_map:
clss = label_map[int(clss)]
display_strs.append([str(clss)]) # need to be a string here because PIL needs to iterate through chars
display_boxes = np.array(display_boxes)
draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs,
thickness=thickness, expansion=expansion)