-
Notifications
You must be signed in to change notification settings - Fork 25
/
8912.c
845 lines (728 loc) · 24.6 KB
/
8912.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/*
** Oricutron
** Copyright (C) 2009-2014 Peter Gordon
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License
** as published by the Free Software Foundation, version 2
** of the License.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
**
** General Instruments AY-8912 emulation (including oric keyboard emulation)
*/
#define TONETIME 8
#define NOISETIME 8
#define ENVTIME 16
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "system.h"
#include "6502.h"
#include "8912.h"
#include "via.h"
#include "gui.h"
#include "disk.h"
#include "monitor.h"
#include "6551.h"
#include "machine.h"
#include "avi.h"
#ifdef __amigaos4__
#include <proto/exec.h>
#endif
SDL_AudioSpec obtained;
Uint32 cyclespersample;
static SDL_AudioCVT cvt;
static Sint16 audiocapbuf[AUDIO_BUFLEN];
extern struct avi_handle *vidcap;
extern Sint16 soundsilence;
extern SDL_bool soundavailable, soundon, warpspeed;
// Variables used by the queuekeys function
// (only works for ROM routines)
static char *keyqueue = NULL;
static int keysqueued = 0, kqoffs = 0;
// Volume levels
Sint32 voltab[] = { 0, 513/4, 828/4, 1239/4, 1923/4, 3238/4, 4926/4, 9110/4, 10344/4, 17876/4, 24682/4, 30442/4, 38844/4, 47270/4, 56402/4, 65535/4};
// Envelope shape descriptions
// Bit 7 set = go to step defined in bits 0-6
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
unsigned char eshape0[] = { 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 128+15 };
unsigned char eshape4[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 0, 128+16 };
unsigned char eshape8[] = { 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 128+0 };
unsigned char eshapeA[] = { 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 128+0 };
unsigned char eshapeB[] = { 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15, 128+16 };
unsigned char eshapeC[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 128+0 };
unsigned char eshapeD[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 128+15 };
unsigned char eshapeE[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 128+0 };
unsigned char *eshapes[] = { eshape0, // 0000
eshape0, // 0001
eshape0, // 0010
eshape0, // 0011
eshape4, // 0100
eshape4, // 0101
eshape4, // 0110
eshape4, // 0111
eshape8, // 1000
eshape0, // 1001
eshapeA, // 1010
eshapeB, // 1011
eshapeC, // 1100
eshapeD, // 1101
eshapeE, // 1110
eshape4 };//1111
static SDL_COMPAT_KEY *keytab;
// Oric keymap (QWERTY)
// FE FD FB F7 EF DF BF 7F
static SDL_COMPAT_KEY qwktab[] = { '7' , 'n' , '5' , 'v' , SDLK_RCTRL , '1' , 'x' , '3' ,
'j' , 't' , 'r' , 'f' , 0 , SDLK_ESCAPE, 'q' , 'd' ,
'm' , '6' , 'b' , '4' , SDLK_LCTRL , 'z' , '2' , 'c' ,
'k' , '9' , ';' , '-' , '#' , 0 , '\\' , '\'' ,
SDLK_SPACE , ',' , '.' , SDLK_UP , SDLK_LSHIFT, SDLK_LEFT , SDLK_DOWN , SDLK_RIGHT ,
'u' , 'i' , 'o' , 'p' , SDLK_LALT , SDLK_BACKSPACE, ']' , '[' ,
'y' , 'h' , 'g' , 'e' , SDLK_RALT , 'a' , 's' , 'w' ,
'8' , 'l' , '0' , '/' , SDLK_RSHIFT, SDLK_RETURN, '`' , SDLK_EQUALS };
// AZERTY
static SDL_COMPAT_KEY azktab[] = { '7' , 'n' , '5' , 'v' , SDLK_RCTRL , '1' , 'x' , '3' ,
'j' , 't' , 'r' , 'f' , 0 , SDLK_ESCAPE, 'a' , 'd' ,
'm' , '6' , 'b' , '4' , SDLK_LCTRL , 'w' , '2' , 'c' ,
'k' , '9' , ';' , '-' , '#' , 0 , '\\' , '\'' ,
SDLK_SPACE , ',' , '.' , SDLK_UP , SDLK_LSHIFT, SDLK_LEFT , SDLK_DOWN , SDLK_RIGHT ,
'u' , 'i' , 'o' , 'p' , SDLK_LALT , SDLK_BACKSPACE, ']' , '[' ,
'y' , 'h' , 'g' , 'e' , SDLK_RALT , 'q' , 's' , 'z' ,
'8' , 'l' , '0' , '/' , SDLK_RSHIFT, SDLK_RETURN, '`' , SDLK_EQUALS };
// QWERTZ
static SDL_COMPAT_KEY qzktab[] = { '7' , 'n' , '5' , 'v' , SDLK_RCTRL , '1' , 'x' , '3' ,
'j' , 't' , 'r' , 'f' , 0 , SDLK_ESCAPE, 'q' , 'd' ,
'm' , '6' , 'b' , '4' , SDLK_LCTRL , 'y' , '2' , 'c' ,
'k' , '9' , ';' , '-' , '#' , 0 , '\\' , '\'' ,
SDLK_SPACE , ',' , '.' , SDLK_UP , SDLK_LSHIFT, SDLK_LEFT , SDLK_DOWN , SDLK_RIGHT ,
'u' , 'i' , 'o' , 'p' , SDLK_LALT , SDLK_BACKSPACE, ']' , '[' ,
'z' , 'h' , 'g' , 'e' , SDLK_RALT , 'a' , 's' , 'w' ,
'8' , 'l' , '0' , '/' , SDLK_RSHIFT, SDLK_RETURN, '`' , SDLK_EQUALS };
// Queue up some key presses. These key presses
// are only detected by the standard ROM routines.
void queuekeys( char *str )
{
if( str )
{
int len = (int)strlen( str );
if( keyqueue )
{
keyqueue = realloc(keyqueue, strlen(keyqueue) + len + 1);
strcat(keyqueue, str);
keysqueued += len;
}
else
{
keyqueue = strdup( str );
keysqueued = len;
kqoffs = 0;
}
}
}
/*
** RNG for the AY noise generator
*/
static Uint32 ayrand( struct ay8912 *ay )
{
Uint32 rbit = (ay->rndrack&1) ^ ((ay->rndrack>>2)&1);
ay->rndrack = (ay->rndrack>>1)|(rbit<<16);
return rbit&1;
}
void ay_audioticktock( struct ay8912 *ay, Uint32 cycles )
{
Sint32 t, i, sum = 0;
Sint32 output;
// For each clock cycle...
for( t=0; t<cycles; t++ )
{
// Count for the noise cycle counter
if( (++ay->ctn) >= ay->noiseper )
{
// Noise counter expired, calculate the next noise output level
ay->currnoise ^= ayrand( ay );
// Reset the noise counter
ay->ctn = 0;
// Remember that the noise output changed
ay->newnoise = SDL_TRUE;
}
// For each audio channel...
for( i=0; i<3; i++ )
{
if( !ay->toneper[i] )
{
if( !ay->sign[i] )
{
ay->sign[i] = 1;
ay->newout |= (1<<i);
continue;
}
}
// Count for the square wave counter
if( (++ay->ct[i]) >= ay->toneper[i] )
{
// Square wave counter expired, reset it...
ay->ct[i] = 0;
// ...and invert the square wave output
ay->sign[i] ^= 1;
// Remember that this channels output has changed
ay->newout |= (1<<i);
}
// If this channel is mixed with noise, and the noise changed,
// then so did this channel.
if( ( ay->newnoise ) && ( !ay->noisebit[i] ) )
ay->newout |= (1<<i);
}
// Count down the envelope cycle counter
if( (++ay->cte) >= ay->envper )
{
// Counter expired, so reset it
ay->cte = 0;
// Move to the next envelope position
ay->envpos++;
// Reached the end of the envelope?
if( ay->envtab[ay->envpos]&0x80 )
ay->envpos = ay->envtab[ay->envpos]&0x7f;
// For each channel...
for( i=0; i<3; i++ )
{
// If the channel is using the envelope generator...
if( ay->regs[AY_CHA_AMP+i]&0x10 )
{
// Recalculate its output volume
ay->vol[i] = voltab[ay->envtab[ay->envpos]];
// and remember that the channel has changed
ay->newout |= (1<<i);
}
}
}
// Loop through the channels
for( i=0; i<3; i++ )
{
// Yep, calculate the squarewave signal...
if( ay->newout & (1<<i) )
ay->out[i] = ((ay->tonebit[i]|ay->sign[i])&(ay->noisebit[i]|ay->currnoise)) * ay->vol[i];
// Mix in the output of this channel
sum += ay->out[i];
}
ay->newout = 0;
}
if( !cycles ) return; // avoid div by zero
// Reduce aliasing by averaging over the cycles in the sample interval
output = soundsilence + sum/cycles;
// Clamp the output
if( output > 32767 ) output = 32767;
// if( output < -32768 ) output = -32768;
ay->output = output;
}
void ay_dowrite( struct ay8912 *ay, struct aywrite *aw )
{
Sint32 i;
switch( aw->reg )
{
case AY_CHA_PER_L: // Channel A period
case AY_CHA_PER_H:
ay->regs[aw->reg] = aw->val;
ay->toneper[0] = (((ay->regs[AY_CHA_PER_H]&0xf)<<8)|ay->regs[AY_CHA_PER_L]) * TONETIME;
break;
case AY_CHB_PER_L: // Channel B period
case AY_CHB_PER_H:
ay->regs[aw->reg] = aw->val;
ay->toneper[1] = (((ay->regs[AY_CHB_PER_H]&0xf)<<8)|ay->regs[AY_CHB_PER_L]) * TONETIME;
break;
case AY_CHC_PER_L: // Channel C period
case AY_CHC_PER_H:
ay->regs[aw->reg] = aw->val;
ay->toneper[2] = (((ay->regs[AY_CHC_PER_H]&0xf)<<8)|ay->regs[AY_CHC_PER_L]) * TONETIME;
break;
case AY_STATUS: // Status
ay->regs[aw->reg] = aw->val;
ay->tonebit[0] = (aw->val&0x01)?1:0;
ay->tonebit[1] = (aw->val&0x02)?1:0;
ay->tonebit[2] = (aw->val&0x04)?1:0;
ay->noisebit[0] = (aw->val&0x08)?1:0;
ay->noisebit[1] = (aw->val&0x10)?1:0;
ay->noisebit[2] = (aw->val&0x20)?1:0;
ay->newout = 7;
break;
case AY_NOISE_PER: // Noise period
ay->regs[aw->reg] = aw->val;
ay->noiseper = (ay->regs[AY_NOISE_PER]&0x1f) * NOISETIME;
break;
case AY_CHA_AMP:
case AY_CHB_AMP:
case AY_CHC_AMP:
ay->regs[aw->reg] = aw->val;
i = aw->reg-AY_CHA_AMP;
if(aw->val&0x10)
ay->vol[i] = voltab[ay->envtab[ay->envpos]];
else
ay->vol[i] = voltab[aw->val&0xf];
ay->newout |= (1<<i);
break;
case AY_ENV_PER_L:
case AY_ENV_PER_H:
ay->regs[aw->reg] = aw->val;
ay->envper = ((ay->regs[AY_ENV_PER_H]<<8)|ay->regs[AY_ENV_PER_L])*ENVTIME;
break;
case AY_ENV_CYCLE:
if( aw->val != 0xff )
{
ay->regs[aw->reg] = aw->val;
ay->envtab = eshapes[aw->val&0xf];
ay->envpos = 0;
for( i=0; i<3; i++ )
{
if( ay->regs[AY_CHA_AMP+i]&0x10 )
{
ay->vol[i] = voltab[ay->envtab[ay->envpos]];
ay->newout |= (1<<i);
}
}
}
break;
}
}
void ay_flushlog( struct ay8912 *ay )
{
int i;
for (i=0; i<ay->logged; i++)
ay_dowrite( ay, &ay->writelog[i] );
ay->logged = 0;
}
/*
** This is the SDL audio callback. It is called by SDL
** when it needs a sound buffer to be filled.
*/
void ay_callback( void *dummy, Sint8 *stream, int length )
{
Uint16 *out;
Sint16 fout;
Sint32 i, j, logc, tlogc;
struct ay8912 *ay = (struct ay8912 *)dummy;
Sint32 dcadjustave, dcadjustmax;
SDL_bool tapenoise;
int actual_length;
logc = 0;
tlogc = 0;
dcadjustave = 0;
dcadjustmax = soundsilence;
tapenoise = ay->soundloopon || (ay->oric->tapenoise && ((!ay->oric->tapeturbo)||(ay->oric->rawtape)));
if( !tapenoise ) ay->tapeout = 0;
out = (Uint16 *)stream;
cvt.buf = (Uint8 *)stream;
actual_length = length/(2*sizeof(Uint16));
actual_length = (actual_length < AUDIO_BUFLEN)? actual_length : AUDIO_BUFLEN;
actual_length = (actual_length < obtained.samples)? actual_length : obtained.samples;
for( i=0,j=0; i<actual_length; i++ )
{
ay->ccyc = ay->ccycle>>FPBITS;
while( ( logc < ay->logged ) && ( ay->ccyc >= ay->writelog[logc].cycle ) )
ay_dowrite( ay, &ay->writelog[logc++] );
if( tapenoise )
{
while( ( tlogc < ay->tlogged ) && ( ay->ccyc >= ay->tapelog[tlogc].cycle ) )
ay->tapeout = ay->tapelog[tlogc++].val * 8192;
}
if( ay->ccyc > ay->lastcyc )
{
ay_audioticktock( ay, ay->ccyc-ay->lastcyc );
ay->lastcyc = ay->ccyc;
}
fout = ay->output + ay->tapeout;
out[j++] = fout;
out[j++] = fout;
if( vidcap ) audiocapbuf[i] = fout;
if( fout > dcadjustmax ) dcadjustmax = fout;
dcadjustave += fout;
ay->ccycle += cyclespersample;
}
dcadjustave /= (length/4);
if( (dcadjustmax-dcadjustave) > 32767 )
dcadjustave = -(32767-dcadjustmax);
if( ay->oric->dcadjust && dcadjustave )
{
for( i=0, j=0; i<actual_length; i++ )
{
out[j++] -= dcadjustave;
out[j++] -= dcadjustave;
if( vidcap ) audiocapbuf[i] -= dcadjustave;
}
}
if( vidcap )
{
#if SDL_BYTEORDER == SDL_BIG_ENDIAN
for( i=0; i<(length/4); i++ )
audiocapbuf[i] = SDL_Swap16( audiocapbuf[i] );
#endif
avi_addaudio( &vidcap, audiocapbuf, length/2 );
}
if (ay->logged > logc)
{
memmove(&ay->writelog[0], &ay->writelog[logc], (ay->logged-logc) * sizeof(ay->writelog[0]));
ay->logged -= logc;
for (i=0; i<ay->logged; i++)
ay->writelog[i].cycle -= ay->lastcyc;
/* Got out of sync? */
if (ay->logged > 150)
ay_flushlog( ay );
}
else
{
ay->logged = 0;
}
if( tapenoise )
{
while( tlogc < ay->tlogged )
ay->tapeout = ay->tapelog[tlogc++].val * 8192;
}
SDL_ConvertAudio(&cvt);
ay->ccycle -= (ay->lastcyc<<FPBITS);
ay->lastcyc = 0;
ay->newlogcycle = ay->ccycle>>FPBITS;
ay->do_logcycle_reset = SDL_TRUE;
// ay->logged = 0;
ay->tlogged = 0;
}
/*
** Emulate the AY for some clock cycles
** Output is cycle-exact.
*/
void ay_ticktock( struct ay8912 *ay, int cycles )
{
// Need to do queued keys?
if( ( keyqueue ) && ( keysqueued ) && (!ay->oric->cpu.irq) )
{
if( kqoffs >= keysqueued )
{
free(keyqueue);
keyqueue = NULL;
keysqueued = 0;
kqoffs = 0;
} else {
switch( ay->oric->type )
{
case MACH_ATMOS:
case MACH_PRAVETZ:
if( ( ay->oric->cpu.pc == 0xeb78 ) && ( ay->oric->romon ) )
{
ay->oric->cpu.a = keyqueue[kqoffs++];
ay->oric->cpu.write( &ay->oric->cpu, 0x2df, 0 );
ay->oric->cpu.f_n = 1;
ay->oric->cpu.calcpc = 0xeb88;
ay->oric->cpu.calcop = ay->oric->cpu.read( &ay->oric->cpu, ay->oric->cpu.calcpc );
}
break;
case MACH_ORIC1:
case MACH_ORIC1_16K:
if( ( ay->oric->cpu.pc == 0xe905 ) && ( ay->oric->romon ) )
{
ay->oric->cpu.a = keyqueue[kqoffs++];
ay->oric->cpu.write( &ay->oric->cpu, 0x2df, 0 );
ay->oric->cpu.f_n = 1;
ay->oric->cpu.calcpc = 0xe915;
ay->oric->cpu.calcop = ay->oric->cpu.read( &ay->oric->cpu, ay->oric->cpu.calcpc );
}
break;
}
}
}
// Also use the queuekey location to do the jasmin auto reset
if( ay->oric->auto_jasmin_reset )
{
if (ay->oric->drivetype == DRV_JASMIN)
{
switch( ay->oric->type )
{
case MACH_ATMOS:
case MACH_PRAVETZ:
if( ( ay->oric->cpu.pc == 0xeb78 ) && ( ay->oric->romon ) )
{
ay->oric->cpu.write( &ay->oric->cpu, 0x3fb, 1 ); // ROMDIS
setromon( ay->oric );
m6502_reset( &ay->oric->cpu );
m6502_set_icycles( &ay->oric->cpu, SDL_FALSE, NULL );
via_init( &ay->oric->via, ay->oric, VIA_MAIN );
ay->oric->auto_jasmin_reset = SDL_FALSE;
}
break;
case MACH_ORIC1:
case MACH_ORIC1_16K:
if( ( ay->oric->cpu.pc == 0xe905 ) && ( ay->oric->romon ) )
{
ay->oric->cpu.write( &ay->oric->cpu, 0x3fb, 1 ); // ROMDIS
setromon( ay->oric );
m6502_reset( &ay->oric->cpu );
m6502_set_icycles( &ay->oric->cpu, SDL_FALSE, NULL );
via_init( &ay->oric->via, ay->oric, VIA_MAIN );
ay->oric->auto_jasmin_reset = SDL_FALSE;
}
break;
}
}
else
{
ay->oric->auto_jasmin_reset = SDL_FALSE;
}
}
if( ay->keybitdelay > 0 )
{
if( cycles >= ay->keybitdelay )
{
ay->keybitdelay = 0;
ay_update_keybits( ay );
} else {
ay->keybitdelay -= cycles;
}
}
if( ay->do_logcycle_reset )
{
ay->logcycle = ay->newlogcycle;
ay->do_logcycle_reset = SDL_FALSE;
}
ay->logcycle += cycles;
}
void ay_lockaudio( struct ay8912 *ay )
{
if( ay->audiolocked ) return;
if( ( ay->oric->emu_mode != EM_RUNNING ) || ( !soundon ) || ( warpspeed ) ) return;
SDL_LockAudio();
ay->audiolocked = SDL_TRUE;
}
void ay_unlockaudio( struct ay8912 *ay )
{
if( !ay->audiolocked ) return;
SDL_UnlockAudio();
ay->audiolocked = SDL_FALSE;
}
/*
** Initialise the AY emulation
** (... and oric keyboard)
*/
SDL_bool ay_init( struct ay8912 *ay, struct machine *oric )
{
int i;
switch( oric->keymap )
{
case KMAP_AZERTY: keytab = azktab; break;
case KMAP_QWERTZ: keytab = qzktab; break;
default: keytab = qwktab; break;
}
// No oric keys pressed
for( i=0; i<8; i++ )
ay->keystates[i] = SDL_FALSE;
// Reset all regs to 0
for( i=0; i<NUM_AY_REGS; i++ )
ay->regs[i] = 0;
// Reset the three audio channels
for( i=0; i<3; i++ )
{
ay->ct[i] = 0; // Cycle counter to zero
ay->out[i] = 0; // 0v output for each channel
ay->sign[i] = 0; // Initial sign bit
ay->tonebit[i] = 1; // Output disabled
ay->noisebit[i] = 1; // Noise disabled
ay->vol[i] = 0; // Zero volume
}
ay->newout = 7;
ay->newnoise = SDL_TRUE;
ay->ctn = 0; // Reset the noise counter
ay->cte = 0; // Reset the envelope counter
ay->envtab = eshape0; // Default to envelope 0
ay->envpos = 0;
ay->bmode = 0; // GI silly addressing mode
ay->creg = 0; // Current register to 0
ay->oric = oric;
ay->soundon = soundavailable && soundon && (!warpspeed);
ay->soundloopon = oric->soundloopon;
ay->currnoise = 0;
ay->rndrack = 1;
ay->logged = 0;
ay->logcycle = 0;
ay->do_logcycle_reset = SDL_FALSE;
ay->output = soundsilence;
ay->lastcyc = 0;
ay->ccyc = 0;
ay->ccycle = 0;
ay->tlogged = 0;
ay->tapeout = 0;
ay->keybitdelay = 0;
ay->audiolocked = SDL_FALSE;
if( soundavailable )
SDL_PauseAudio( 0 );
// initialize audio conversion system for SDL2
SDL_BuildAudioCVT(&cvt, AUDIO_S16SYS, 2, AUDIO_FREQ, obtained.format, obtained.channels, obtained.freq);
cvt.len = obtained.samples * sizeof(Sint16) * obtained.channels;
// Do not allocate a buffer, write directly into the callback stream
return SDL_TRUE;
}
/*
** Update the VIA bits when key states change
*/
void ay_update_keybits( struct ay8912 *ay )
{
ay->currkeyoffs = ay->oric->via.read_port_b( &ay->oric->via ) & 0x7;
if( (ay->eregs[AY_STATUS]&0x40) == 0 )
{
ay->oric->via.write_port_b( &ay->oric->via, 0x08, 0x00 );
return;
}
if( ay->keystates[ay->currkeyoffs] & (ay->eregs[AY_PORT_A]^0xff) )
ay->oric->via.write_port_b( &ay->oric->via, 0x08, 0x08 );
else
ay->oric->via.write_port_b( &ay->oric->via, 0x08, 0x00 );
}
/*
** Handle a key press
*/
void ay_keypress( struct ay8912 *ay, SDL_COMPAT_KEY key, SDL_bool down )
{
int i;
// No key?
if( key == 0 ) return;
// Does this key exist on the Oric?
for( i=0; i<64; i++ )
if( keytab[i] == key ) break;
// No...
if( i == 64 ) return;
// Key down event, or key up event?
if( down )
ay->keystates[i>>3] |= (1<<(i&7)); // Down, so set the corresponding bit
else
ay->keystates[i>>3] &= ~(1<<(i&7)); // Up, so clear it
// Maybe update the VIA
if( ay->currkeyoffs == (i>>3) )
{
if( ay->keystates[ay->currkeyoffs] & (ay->eregs[AY_PORT_A]^0xff) )
ay->oric->via.write_port_b( &ay->oric->via, 0x08, 0x08 );
else
ay->oric->via.write_port_b( &ay->oric->via, 0x08, 0x00 );
}
}
/*
** GI addressing
*/
void ay_modeset( struct ay8912 *ay )
{
unsigned char v, lasts6=0;
if( (ay->bmode != AYBMF_BC1) && (ay->oric->porta_ay != 0xff) )
{
ay->oric->porta_ay = 0xff;
if( ay->oric->porta_is_ay )
ay->oric->via.write_port_a( &ay->oric->via, 0xff, 0xff );
}
switch( ay->bmode )
{
case AYBMF_BC1: // Read AY register
ay->oric->porta_ay = (ay->creg>=NUM_AY_REGS) ? 0 : ay->eregs[ay->creg];
ay->oric->via.write_port_a( &ay->oric->via, 0xff, ay->oric->porta_ay );
ay->oric->porta_is_ay = SDL_TRUE;
break;
case AYBMF_BDIR: // Write AY register
if( ay->creg >= NUM_AY_REGS ) break;
v = ay->oric->via.read_port_a( &ay->oric->via );
if( ay->creg == AY_STATUS )
lasts6 = ay->eregs[AY_STATUS] & 0x40;
if( ( ay->creg != AY_ENV_CYCLE ) || ( v != 0xff ) )
ay->eregs[ay->creg] = v;
switch( ay->creg )
{
case AY_STATUS:
if( (ay->eregs[AY_STATUS]&0x40) != lasts6 )
{
ay->keybitdelay = 3;
}
case AY_CHA_PER_L: // Channel A period
case AY_CHA_PER_H:
case AY_CHB_PER_L: // Channel B period
case AY_CHB_PER_H:
case AY_CHC_PER_L: // Channel C period
case AY_CHC_PER_H:
case AY_NOISE_PER: // Noise period
case AY_CHA_AMP:
case AY_CHB_AMP:
case AY_CHC_AMP:
case AY_ENV_PER_L:
case AY_ENV_PER_H:
case AY_ENV_CYCLE:
if( ( !soundon ) || ( warpspeed ) )
{
struct aywrite writenow;
ay_flushlog( ay );
writenow.cycle = 0;
writenow.reg = ay->creg;
writenow.val = v;
ay_dowrite( ay, &writenow );
break;
}
ay_lockaudio( ay ); // Gets unlocked at the end of each frame
if( ay->do_logcycle_reset )
{
ay->logcycle = ay->newlogcycle;
ay->do_logcycle_reset = SDL_FALSE;
}
if( ay->logged >= WRITELOG_SIZE )
ay_flushlog( ay );
ay->writelog[ay->logged ].cycle = ay->logcycle;
ay->writelog[ay->logged ].reg = ay->creg;
ay->writelog[ay->logged++].val = v;
break;
case AY_PORT_A:
ay->keybitdelay = 3;
break;
}
break;
case AYBMF_BDIR|AYBMF_BC1: // Set register
ay->creg = ay->oric->via.read_port_a( &ay->oric->via );
break;
}
}
void ay_set_bcmode( struct ay8912 *ay, unsigned char bc1, unsigned char bdir )
{
ay->bmode = (bc1?AYBMF_BC1:0)|(bdir?AYBMF_BDIR:0);
ay_modeset( ay );
}
void ay_set_bc1( struct ay8912 *ay, unsigned char state )
{
if( state )
ay->bmode |= AYBMF_BC1;
else
ay->bmode &= ~AYBMF_BC1;
ay_modeset( ay );
}
void ay_set_bdir( struct ay8912 *ay, unsigned char state )
{
if( state )
ay->bmode |= AYBMF_BDIR;
else
ay->bmode &= ~AYBMF_BDIR;
ay_modeset( ay );
}
void ay_soundloop( struct ay8912 *ay, unsigned char oldval, unsigned char newval)
{
if( !ay->soundloopon )
return;
oldval &= 0x80;
newval &= 0x80;
if( oldval == newval )
return;
ay_lockaudio( ay );
if(ay->do_logcycle_reset)
{
ay->logcycle = ay->newlogcycle;
ay->do_logcycle_reset = SDL_FALSE;
}
if(ay->tlogged < TAPELOG_SIZE)
{
ay->tapelog[ay->tlogged].cycle = ay->logcycle;
ay->tapelog[ay->tlogged++].val = newval? 1 : 0;
}
ay_unlockaudio( ay );
}