forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_vlm.py
204 lines (153 loc) · 7.36 KB
/
pretrain_vlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Pretrain vision language model."""
from copy import deepcopy
from functools import partial
import torch
from megatron.training import get_args, get_timers, get_tokenizer, print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core import tensor_parallel
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.multimodal_dataset import MockMultimodalDataset, MultimodalDatasetConfig
from megatron.core.enums import ModelType
from megatron.core.models.gpt.gpt_layer_specs import get_gpt_layer_with_transformer_engine_spec
from megatron.core.models.multimodal.llava_model import LLaVAModel
from megatron.core.transformer.spec_utils import import_module
from megatron.training import pretrain
from pretrain_gpt_nexus_dataset import is_dataset_built_on_rank, loss_func
def model_provider(pre_process=True, post_process=True) -> LLaVAModel:
"""Builds the model.
Note: currently, only LLaVA model is supported. Follow-up changes will make this configurable.
Args:
pre_process (bool): Enable preprocessing in the model. NOTE: Not used at the moment.
post_process (bool): Enable postprocessing in the model. NOTE: Not used at the moment.
Returns:
model (megatron.core.models.multimodal.llava_model.LLaVAModel): A multimodal model
"""
args = get_args()
print_rank_0('building a multimodal model ...')
language_transformer_config = core_transformer_config_from_args(get_args())
if args.spec is not None:
language_transformer_layer_spec = import_module(args.spec)
else:
language_transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(
args.num_experts, args.moe_grouped_gemm
)
# TODO: Make these configurable via input .yaml config.
vision_transformer_config = deepcopy(language_transformer_config)
vision_transformer_layer_spec = deepcopy(language_transformer_layer_spec)
vision_projection_type = "mlp"
vision_projection_config = deepcopy(language_transformer_config)
vision_projection_modules = deepcopy(language_transformer_layer_spec.submodules.mlp.submodules)
model = LLaVAModel(
language_transformer_config=language_transformer_config,
language_transformer_layer_spec=language_transformer_layer_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
vision_transformer_config=vision_transformer_config,
vision_transformer_layer_spec=vision_transformer_layer_spec,
vision_projection_config=vision_projection_config,
vision_projection_layer_spec=vision_projection_modules,
vision_projection_type=vision_projection_type,
)
return model
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train, validation, and test sets.
Returns:
train_ds, val_ds, test_ds (megatron.core.datasets.multimodal_dataset.MockMultimodalDataset): Train, validation, and test datasets, respectively.
"""
args = get_args()
tokenizer = get_tokenizer()
config = MultimodalDatasetConfig(
random_seed=args.seed,
sequence_length=args.seq_length,
tokenizer=tokenizer,
reset_position_ids=args.reset_position_ids,
reset_attention_mask=args.reset_attention_mask,
eod_mask_loss=args.eod_mask_loss,
mock=True,
image_h=args.img_h,
image_w=args.img_w,
preprocess_func=_preprocess_data_for_llava,
)
dataset_type = MockMultimodalDataset
print_rank_0("> building train, validation, and test datasets for multimodal ...")
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
dataset_type, train_val_test_num_samples, is_dataset_built_on_rank, config
).build()
print_rank_0("> finished creating multimodal datasets ...")
return train_ds, valid_ds, test_ds
def _preprocess_data_for_llava(data):
"""Preprocess data sample to the format expected by a LLaVA model.
Note: This doesn't support all the different modes in the official LLaVA repo yet.
Args:
data (dict): Data sample with keys like 'image', 'tokens', etc.
Returns:
data (dict): Processed data sample suitable for the model.
"""
args = get_args()
# TODO: Move these to multimodal spec (added in a separate code change).
class_token_len = 1
add_class_token = True
num_patches_per_dim_h = args.img_h // args.patch_dim
num_patches_per_dim_w = args.img_w // args.patch_dim
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
num_image_tokens = num_patches + (class_token_len if add_class_token else 0)
data["loss_mask"] = torch.cat(
[torch.zeros(num_image_tokens, dtype=torch.float32), data["loss_mask"]]
)
data["labels"] = torch.cat([torch.zeros(num_image_tokens, dtype=torch.int64), data["labels"]])
full_seq_length = len(data["labels"])
attention_mask = torch.tril(torch.ones((1, full_seq_length, full_seq_length)))
attention_mask = attention_mask < 0.5
attention_mask[:, num_image_tokens:, num_image_tokens:] = data["attention_mask"]
data["attention_mask"] = attention_mask
return data
def get_batch(data_iterator):
"""Generate a batch.
Args:
data_iterator: Iterable dataset.
Returns:
sample: A data sample with images, tokens, etc.
"""
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_i = tensor_parallel.broadcast_data(["tokens", "position_ids", "labels"], data, torch.int64)
data_f = tensor_parallel.broadcast_data(["image", "loss_mask"], data, torch.float32)
data_b = tensor_parallel.broadcast_data(["attention_mask"], data, torch.bool)
tokens = data_i["tokens"].long()
position_ids = data_i["position_ids"].long()
labels = data_i["labels"].long()
images = data_f["image"].float()
loss_mask = data_f["loss_mask"].float()
attention_mask = data_b["attention_mask"].bool()
return tokens, position_ids, labels, images, loss_mask, attention_mask
def forward_step(data_iterator, model: LLaVAModel):
"""Forward training step.
Args:
data_iterator: Iterable dataset.
model (megatron.core.models.multimodal.llava_model.LLaVAModel): Multimodal model
Returns:
output_tensor (torch.Tensor): Loss of shape [b, s] if labels are provided, otherwise logits of shape [b, s, vocab_size].
loss_func (callable): Loss function with a loss mask specified.
"""
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, position_ids, labels, images, loss_mask, attention_mask = get_batch(data_iterator)
timers('batch-generator').stop()
output_tensor = model(images, tokens, position_ids, attention_mask, labels=labels)
return output_tensor, partial(loss_func, loss_mask)
if __name__ == "__main__":
train_valid_test_datasets_provider.is_distributed = True
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
)