-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStudent Performance Prediction.py
177 lines (142 loc) · 6.33 KB
/
Student Performance Prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 24 16:51:20 2021
@author: peter2st
"""
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
df = pd.read_csv('C:/Users/scott/Desktop/Programming Stuff/Data_sets/StudentsPerformance.csv')
df.rename(columns={"test preparation course": "prep", "math score": "math", "reading score": "reading", "writing score": "writing", 'parental level of education': 'parental', 'race/ethnicity': 'race'}, inplace=True)
#plotting gender
sns.set_style('whitegrid')
sns.countplot(y='gender',data=df,palette='winter')
plt.show()
#plotting race
sns.countplot(y='race', data=df, palette='winter')
plt.show()
#plotting whether or not the student completed the test prep
sns.countplot(y='prep', data=df, palette='winter')
plt.show()
#plotting lunch
sns.countplot(y='lunch', data=df, palette='winter')
plt.show()
#plotting the parental level of education
sns.countplot(y='parental', data=df, palette='winter')
plt.show()
df['gender'].replace('female', 1,inplace=True)
df['gender'].replace('male', 0,inplace=True)
df['lunch'].replace('standard', 1,inplace=True)
df['lunch'].replace('free/reduced', 0,inplace=True)
df['prep'].replace('completed', 1,inplace=True)
df['prep'].replace('none', 0,inplace=True)
print(df.race.unique())
df['groupA'] = df['race'].apply(lambda x: 1 if x == 'group A' else 0)
df['groupB'] = df['race'].apply(lambda x: 1 if x == 'group B' else 0)
df['groupC'] = df['race'].apply(lambda x: 1 if x == 'group C' else 0)
df['groupD'] = df['race'].apply(lambda x: 1 if x == 'group D' else 0)
df['groupE'] = df['race'].apply(lambda x: 1 if x == 'group E' else 0)
df = df.drop(['race'], 1)
df['parental'] = df['parental'].apply(lambda x: 0 if x == 'some high school' else
(1 if x == 'high school' else
(2 if x == 'some college' else
(3 if x == 'associate\'s degree' else
(4 if x == 'bachelor\'s degree' else 5)))))
max_math = max(df['math'])
min_math = min(df['math'])
df['math'] = df['math'].apply(lambda x: ((x - min_math)/(max_math - min_math)))
max_reading = max(df['reading'])
min_reading = min(df['reading'])
df['reading'] = df['reading'].apply(lambda x: ((x - min_reading)/(max_reading - min_reading)))
max_writing = max(df['writing'])
min_writing = min(df['writing'])
df['writing'] = df['writing'].apply(lambda x: ((x - min_writing)/(max_writing - min_writing)))
df['avg'] = (df['math'] + df['reading'] + df['writing']) / 3
df['pass'] = df['avg'].apply(lambda x: 1 if x >= .60 else 0)
pd.set_option('display.max_columns', None)
print(df.head())
lg = LinearRegression()
#features = ['gender', 'lunch', 'prep', 'groupA', 'groupB', 'groupC', 'groupD', 'groupE', 'parental']
features = ['gender', 'lunch', 'prep']
print(df.head())
# #Predict math scores
# x = df[features]
# y = df[['math']]
# x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=.8, test_size=.2, random_state=100)
# lg.fit(x_train, y_train)
# #math_predict = lg.predict([[1, 1, 0, 0, 1, 0, 0, 0, 5]]) * 100
# math_predict = lg.predict([[1, 1, 0]]) * 100
# math_predict = round(math_predict[0][0], 2)
# print('According to your information, I predict you will get a',math_predict,'% on your math test.')
# #Predict reading scores
# x = df[features]
# y = df[['reading']]
# x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=.8, test_size=.2, random_state=100)
# lg.fit(x_train, y_train)
# #reading_predict = lg.predict([[1, 1, 0, 0, 1, 0, 0, 0, 5]]) * 100
# reading_predict = lg.predict([[1, 1, 0]]) * 100
# reading_predict = round(reading_predict[0][0], 2)
# print('According to your information, I predict you will get a',reading_predict,'% on your reading test.')
# #Predict writing scores
# x = df[features]
# y = df[['writing']]
# x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=.8, test_size=.2, random_state=100)
# lg.fit(x_train, y_train)
# #writing_predict = lg.predict([[1, 1, 0, 0, 1, 0, 0, 0, 5]]) * 100
# writing_predict = lg.predict([[1, 1, 0]]) * 100
# writing_predict = round(writing_predict[0][0], 2)
# print('According to your information, I predict you will get a',writing_predict,'% on your writing test.')
# #Predict average score
# x = df[features]
# y = df[['avg']]
# x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=.8, test_size=.2, random_state=100)
# lg.fit(x_train, y_train)
# #avg_predict = lg.predict([[1, 1, 0, 0, 1, 0, 0, 0, 5]]) * 100
# avg_predict = lg.predict([[1, 1, 0]]) * 100
# avg_predict = round(avg_predict[0][0], 2)
# print('According to your information, I predict you will get a',avg_predict,'% average.')
#Predict pass or fail
log = LogisticRegression()
x = df[features]
y = df[['pass']]
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=.8, test_size=.2, random_state=100)
log.fit(x_train, y_train.values.ravel())
#Predict chance of pass or fail
#pass_predict = log.predict([[1, 1, 0, 0, 1, 0, 0, 0, 5]])
#percent_pass = log.predict_proba([[1, 1, 0, 0, 1, 0, 0, 0, 5]])
# pass_predict = log.predict([[1, 1, 0]])
# percent_pass = log.predict_proba([[1, 1, 0]])
# pass_perc = round(percent_pass[0][1], 3) * 100
# fail_perc = round(percent_pass[0][0], 3) * 100
# print('According to your information, I predict that there is a',pass_perc,'% chance you will pass, and a',fail_perc,'% chance you will fail.')
# print(pass_predict)
#Let's plot some graphs to display some of the stats of the students performances
pass_count = 0
fail_count = 0
for i in df['pass']:
if i == 1:
pass_count += 1
else:
fail_count += 1
plt.bar('Pass', pass_count)
plt.bar('Fail', fail_count)
plt.show()
sns.countplot(y='pass', data=df, palette='winter')
plt.show()
lg.fit(x_train, y_train)
print(lg.score(x_test, y_test))
print(log.score(x_test, y_test))
x_train, x_test, y_train, y_test = train_test_split(x, np.ravel(y), train_size = 0.8, test_size = 0.2, random_state = 100)
forest = RandomForestClassifier(n_estimators = 2)
forest.fit(x_train, y_train)
score = forest.score(x_test, y_test)
print(score)
print(lg.coef_)
print(log.coef_)
print(forest.predict([[0, 0, 1]]))