-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathblackbody.m
29 lines (25 loc) · 936 Bytes
/
blackbody.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
%BLACKBODY Compute blackbody emission spectrum
%
% E = BLACKBODY(LAMBDA, T) is the blackbody radiation power density [W/m^3]
% at the wavelength LAMBDA [m] and temperature T [K].
%
% If LAMBDA is a column vector (Nx1), then E is a column vector (Nx1) of
% blackbody radiation power density at the corresponding elements of
% LAMBDA.
%
% Example::
% l = [380:10:700]'*1e-9; % visible spectrum
% e = blackbody(l, 6500); % emission of sun
% plot(l, e)
%
% References::
% - Robotics, Vision & Control, Section 10.1,
% P. Corke, Springer 2011.
% Copyright 2022-2023 Peter Corke, Witold Jachimczyk, Remo Pillat
function e = blackbody(lam, T)
% physical constants
c = 2.99792458e8; % m/s (speed of light)
h = 6.626068e-34; % m2 kg / s (Planck's constant)
k = 1.3806503e-23; % J K-1 (Boltzmann's constant)
lam = lam(:);
e = 2*h*c^2 ./ (lam.^5 .* (exp(h*c/k/T./lam) - 1));