-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAgent.py
127 lines (103 loc) · 5.79 KB
/
Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#MIT License
#Copyright (c) 2017 Peter Dekker
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.
# Agent.py: Defines object representing one agent
import numpy as np
from collections import defaultdict
from Exemplar import Exemplar
class Agent(object):
def send_exemplar(self):
if len(self.exemplar_set) > 0:
# Choose exemplar, with equal probability
exemplar = np.random.choice(self.exemplar_set)
exemplar_function = exemplar.get_function()
# Calculate statistics of own agent
p_f, p_c, p_joint_f_c, p_cond_c_f, p_cond_f_c, p_cond_c_f_bidir = self.calculate_statistics()
possible_constructions = []
probs = []
# With probability self.random_construction_probability, sample from p_c
if np.random.random() < self.random_construction_probability:
for c in p_c:
possible_constructions.append(c)
probs.append(p_c[c])
else:
# Otherwise, use normalized p(c|f)*p(f|c) of own agent to decide which construction to use
for c,f in p_cond_c_f_bidir:
if f == exemplar_function:
possible_constructions.append(c)
prob = p_cond_c_f_bidir[(c,f)]
probs.append(prob)
# These pseudo-probabilities have to be normalized
bidir_total = sum(probs)
probs = [x/float(bidir_total) for x in probs]
constr_indices = np.arange(len(possible_constructions))
construction_index = np.random.choice(constr_indices,p=probs)
construction = possible_constructions[construction_index]
# Create new exemplar, with function from own exemplar, and chosen construction
new_exemplar = Exemplar(exemplar_function,construction)
# Remove own exemplar
self.exemplar_set.remove(exemplar)
else:
new_exemplar = None
# Return new exemplar
return new_exemplar
def receive_exemplar(self, exemplar):
self.exemplar_set.append(exemplar)
def count_exemplars(self, count_construction, count_function, count_f_c):
for exemplar in self.exemplar_set:
function = exemplar.get_function()
construction = exemplar.get_construction()
count_construction[construction] += 1
count_function[function] +=1
count_f_c[(function,construction)] += 1
def calculate_statistics(self):
count_construction = defaultdict(int)
count_function = defaultdict(int)
count_f_c = defaultdict(int)
self.count_exemplars(count_construction, count_function, count_f_c)
count_construction_total = sum(count_construction.values())
count_function_total = sum(count_function.values())
count_f_c_total = sum(count_f_c.values())
assert count_construction_total == count_function_total == count_f_c_total
p_f = defaultdict(float)
p_c = defaultdict(float)
p_joint_f_c = defaultdict(float)
p_cond_c_f = defaultdict(float)
p_cond_f_c = defaultdict(float)
p_cond_c_f_bidir = defaultdict(float)
p_cond_c_f_bidir_norm = defaultdict(float)
for function in count_function:
# p(function) = c(function)/c(total)
p_f[function] = count_function[function]/float(count_function_total)
for construction in count_construction:
# p(construction) = c(construction)/c(total)
p_c[construction] = count_construction[construction]/float(count_construction_total)
for function,construction in count_f_c:
# p(function,construction) = count(function,construction)/c_total
p_joint_f_c[(function,construction)] = count_f_c[(function,construction)]/float(count_f_c_total)
# p(construction|function) = p(construction,function) / p(function)
p_cond_c_f[(construction,function)] = p_joint_f_c[(function,construction)] / float(p_f[function])
# p(function|construction) = p(function,construction) / p(construction)
p_cond_f_c[(function,construction)] = p_joint_f_c[(function,construction)] / float(p_c[construction])
p_cond_c_f_bidir[(construction,function)] = p_cond_c_f[(construction,function)] * p_cond_f_c[(function,construction)]
return p_f, p_c, p_joint_f_c, p_cond_c_f, p_cond_f_c, p_cond_c_f_bidir
def __init__(self,a_id, exemplar_set, random_construction_probability):
self.a_id = str(a_id)
self.exemplar_set = exemplar_set
self.random_construction_probability = random_construction_probability
def __str__(self):
return str(self.a_id)