forked from Naresh1318/Adversarial_Autoencoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic_nn_classifier.py
executable file
·148 lines (127 loc) · 5.53 KB
/
basic_nn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import tensorflow as tf
import numpy as np
import os
import datetime
from tensorflow.examples.tutorials.mnist import input_data
# Parameters
input_dim = 784
n_l1 = 1000
n_l2 = 1000
batch_size = 100
n_epochs = 1000
learning_rate = 0.001
beta1 = 0.9
z_dim = 'NA'
results_path = './Results/Basic_NN_Classifier'
n_labels = 10
n_labeled = 1000
# Get MNIST data
mnist = input_data.read_data_sets('./Data', one_hot=True)
# Placeholders
x_input = tf.placeholder(dtype=tf.float32, shape=[None, 784])
y_target = tf.placeholder(dtype=tf.float32, shape=[None, 10])
def form_results():
"""
Forms folders for each run to store the tensorboard files, saved models and the log files.
:return: three string pointing to tensorboard, saved models and log paths respectively.
"""
folder_name = "/{0}_{1}_{2}_{3}_{4}_{5}_Basic_NN_Classifier". \
format(datetime.datetime.now(), z_dim, learning_rate, batch_size, n_epochs, beta1)
tensorboard_path = results_path + folder_name + '/Tensorboard'
saved_model_path = results_path + folder_name + '/Saved_models/'
log_path = results_path + folder_name + '/log'
if not os.path.exists(results_path + folder_name):
os.mkdir(results_path + folder_name)
os.mkdir(tensorboard_path)
os.mkdir(saved_model_path)
os.mkdir(log_path)
return tensorboard_path, saved_model_path, log_path
def next_batch(x, y, batch_size):
"""
Used to return a random batch from the given inputs.
:param x: Input images of shape [None, 784]
:param y: Input labels of shape [None, 10]
:param batch_size: integer, batch size of images and labels to return
:return: x -> [batch_size, 784], y-> [batch_size, 10]
"""
index = np.arange(n_labeled)
random_index = np.random.permutation(index)[:batch_size]
return x[random_index], y[random_index]
def dense(x, n1, n2, name):
"""
Used to create a dense layer.
:param x: input tensor to the dense layer
:param n1: no. of input neurons
:param n2: no. of output neurons
:param name: name of the entire dense layer.
:return: tensor with shape [batch_size, n2]
"""
with tf.name_scope(name):
weights = tf.Variable(tf.random_normal(shape=[n1, n2], mean=0., stddev=0.01), name='weights')
bias = tf.Variable(tf.zeros(shape=[n2]), name='bias')
output = tf.add(tf.matmul(x, weights), bias, name='output')
return output
# Dense Network
def dense_nn(x):
"""
Network used to classify MNIST digits.
:param x: tensor with shape [batch_size, 784], input to the dense fully connected layer.
:return: [batch_size, 10], logits of dense fully connected.
"""
dense_1 = tf.nn.dropout(tf.nn.relu(dense(x, input_dim, n_l1, 'dense_1')), keep_prob=0.25)
dense_2 = tf.nn.dropout(tf.nn.relu(dense(dense_1, n_l1, n_l2, 'dense_2')), keep_prob=0.25)
dense_3 = dense(dense_2, n_l2, n_labels, 'dense_3')
return dense_3
def train():
"""
Used to train the autoencoder by passing in the necessary inputs.
:return: does not return anything
"""
dense_output = dense_nn(x_input)
# Loss function
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=dense_output, labels=y_target))
# Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(loss)
# Accuracy
pred_op = tf.equal(tf.argmax(dense_output, 1), tf.argmax(y_target, 1))
accuracy = tf.reduce_mean(tf.cast(pred_op, dtype=tf.float32))
# Summary
tf.summary.scalar(name='Loss', tensor=loss)
tf.summary.scalar(name='Accuracy', tensor=accuracy)
summary_op = tf.summary.merge_all()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
step = 0
with tf.Session() as sess:
tensorboard_path, saved_model_path, log_path = form_results()
x_l, y_l = mnist.test.next_batch(n_labeled)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
sess.run(init)
for e in range(1, n_epochs + 1):
n_batches = int(n_labeled / batch_size)
for b in range(1, n_batches + 1):
batch_x_l, batch_y_l = next_batch(x_l, y_l, batch_size=batch_size)
sess.run(optimizer, feed_dict={x_input: batch_x_l, y_target: batch_y_l})
if b % 5 == 0:
loss_, summary = sess.run([loss, summary_op], feed_dict={x_input: batch_x_l, y_target: batch_y_l})
writer.add_summary(summary, step)
print("Epoch: {} Iteration: {}".format(e, b))
print("Loss: {}".format(loss_))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: {}, iteration: {}\n".format(e, b))
log.write("Loss: {}\n".format(loss_))
step += 1
acc = 0
num_batches = int(mnist.validation.num_examples / batch_size)
for j in range(num_batches):
# Classify unseen validation data instead of test data or train data
batch_x_l, batch_y_l = mnist.validation.next_batch(batch_size=batch_size)
val_acc = sess.run(accuracy, feed_dict={x_input: batch_x_l, y_target: batch_y_l})
acc += val_acc
acc /= num_batches
print("Classification Accuracy: {}".format(acc))
with open(log_path + '/log.txt', 'a') as log:
log.write("Classification Accuracy: {}".format(acc))
saver.save(sess, save_path=saved_model_path, global_step=step)
if __name__ == '__main__':
train()