forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
affine_quantizer.cpp
402 lines (356 loc) · 13 KB
/
affine_quantizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#include <ATen/native/quantized/affine_quantizer.h>
#include <cfenv>
#ifdef USE_FBGEMM
#include <fbgemm/QuantUtils.h>
#endif
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
namespace at {
namespace native {
DEFINE_DISPATCH(quantize_tensor_per_tensor_affine_stub);
DEFINE_DISPATCH(quantize_tensor_per_channel_affine_stub);
DEFINE_DISPATCH(dequantize_tensor_per_tensor_affine_stub);
DEFINE_DISPATCH(dequantize_tensor_per_channel_affine_stub);
namespace {
void checkRoundingMode(const std::string& fn_name) {
// Disabling this warning message for now as it is printed incorrectly. Need to fix
/* TORCH_WARN_ONCE(
std::fegetround() != FE_TONEAREST,
fn_name,
" current rounding mode is not set to round-to-nearest-ties-to-even (FE_TONEAREST). This will cause accuracy issues in quantized models.");
*/
return;
}
void checkCPUTensor(const std::string& fn_name, Tensor t) {
TORCH_CHECK(
t.device().type() == kCPU, fn_name, " only supports CPU device type.");
}
void checkFloatTensor(const std::string& fn_name, Tensor t) {
TORCH_CHECK(t.scalar_type() == kFloat, fn_name, " expects a Float Tensor.");
}
void checkSameDevice(const std::string& fn_name, Tensor t1, Tensor t2) {
TORCH_CHECK(
t1.device() == t2.device(),
fn_name,
" expects a quantized and float tensors to be on the same device.");
}
template <typename T>
void checkQuantizedTensor(const std::string& fn_name, Tensor t) {
TORCH_CHECK(t.is_quantized(), fn_name, " expects a quantized Tensor.");
TORCH_CHECK(
t.scalar_type() == caffe2::TypeMeta::Make<T>(),
fn_name,
" expects a ",
caffe2::TypeMeta::Make<T>(),
" Tensor");
}
template <typename T>
void checkZeroPoint(const std::string& fn_name, int64_t zero_point) {
TORCH_CHECK(
zero_point <= std::numeric_limits<T>::max(),
fn_name,
" zero_point ",
zero_point,
" is out of range.");
TORCH_CHECK(
zero_point >= std::numeric_limits<T>::min(),
fn_name,
" zero_point ",
zero_point,
" is out of range.");
}
template <typename T>
void checkZeroPoints(const std::string& fn_name, Tensor zero_points) {
auto zero_points_data = zero_points.data_ptr<int64_t>();
for (size_t i = 0; i < zero_points.numel(); ++i) {
checkZeroPoint<T>(fn_name, zero_points_data[i]);
}
}
void checkSameSize(const std::string& fn_name, Tensor qt, Tensor rt) {
TORCH_CHECK(
qt.sizes().equals(rt.sizes()),
fn_name,
" only works with Tensors with the same shape");
}
} // anonymous namespace
Tensor quantize_tensor_per_tensor_affine(
Tensor rtensor,
Tensor qtensor,
double scale,
int64_t zero_point) {
static const auto fn_name = "quantize_tensor_per_tensor_affine";
checkRoundingMode(fn_name);
checkFloatTensor(fn_name, rtensor);
checkSameDevice(fn_name, rtensor, qtensor);
checkSameSize(fn_name, qtensor, rtensor);
AT_DISPATCH_QINT_TYPES(qtensor.scalar_type(), fn_name, [&]() {
checkQuantizedTensor<scalar_t>(fn_name, qtensor);
checkZeroPoint<underlying_t>(fn_name, zero_point);
});
quantize_tensor_per_tensor_affine_stub(
rtensor.device().type(), rtensor, qtensor, scale, zero_point);
return qtensor;
}
Tensor quantize_tensor_per_channel_affine(
Tensor rtensor,
Tensor qtensor,
Tensor scales,
Tensor zero_points,
int64_t axis) {
static const auto fn_name = "quantize_tensor_per_channel_affine";
checkRoundingMode(fn_name);
checkFloatTensor(fn_name, rtensor);
checkCPUTensor(fn_name, rtensor);
checkSameDevice(fn_name, rtensor, qtensor);
checkSameSize(fn_name, qtensor, rtensor);
AT_DISPATCH_QINT_TYPES(qtensor.scalar_type(), fn_name, [&]() {
checkQuantizedTensor<scalar_t>(fn_name, qtensor);
checkZeroPoints<underlying_t>(fn_name, zero_points);
});
TORCH_CHECK(
0 <= axis && axis < rtensor.dim(),
"Channel axis out of range in per channel affine quantization. Got: ",
axis, "Expected: [0, ", rtensor.dim(), ")");
int64_t channel = rtensor.size(axis);
TORCH_CHECK(
channel == int64_t(scales.numel()),
"length of scales must equal to channel");
TORCH_CHECK(
channel == int64_t(zero_points.numel()),
"length of zero_points must equal to channel");
quantize_tensor_per_channel_affine_stub(
rtensor.device().type(), rtensor, qtensor, scales, zero_points, axis);
return qtensor;
}
Tensor dequantize_tensor_per_tensor_affine(
Tensor qtensor,
Tensor rtensor,
double scale,
int64_t zero_point) {
static const auto fn_name = "dequantize_tensor_per_tensor_affine";
checkFloatTensor(fn_name, rtensor);
checkSameDevice(fn_name, rtensor, qtensor);
checkSameSize(fn_name, qtensor, rtensor);
AT_DISPATCH_QINT_TYPES(qtensor.scalar_type(), fn_name, [&]() {
checkQuantizedTensor<scalar_t>(fn_name, qtensor);
checkZeroPoint<underlying_t>(fn_name, zero_point);
});
dequantize_tensor_per_tensor_affine_stub(
qtensor.device().type(), qtensor, rtensor, scale, zero_point);
return rtensor;
}
Tensor dequantize_tensor_per_channel_affine(
Tensor qtensor,
Tensor rtensor,
Tensor scales,
Tensor zero_points,
int64_t axis) {
static const auto fn_name = "dequantize_tensor_per_channel_affine";
checkFloatTensor(fn_name, rtensor);
checkCPUTensor(fn_name, rtensor);
checkSameDevice(fn_name, rtensor, qtensor);
checkSameSize(fn_name, qtensor, rtensor);
AT_DISPATCH_QINT_TYPES(qtensor.scalar_type(), fn_name, [&]() {
checkQuantizedTensor<scalar_t>(fn_name, qtensor);
checkZeroPoints<underlying_t>(fn_name, zero_points);
});
TORCH_CHECK(
0 <= axis && axis < qtensor.dim(),
"Channel axis out of range in per channel affine dequantization. Got:",
axis, " Expected: [0, ", qtensor.dim(), ")");
int64_t channel = qtensor.size(axis);
TORCH_CHECK(
channel == int64_t(scales.numel()),
"length of scales must equal to channel");
TORCH_CHECK(
channel == int64_t(zero_points.numel()),
"length of zero_points must equal to channel");
dequantize_tensor_per_channel_affine_stub(
qtensor.device().type(), qtensor, rtensor, scales, zero_points, axis);
return rtensor;
}
#ifdef USE_FBGEMM
// Note: quantize_val is only explicitly used in test outside of this file
template <typename T>
T quantize_val(double scale, int64_t zero_point, float value) {
// Internally, fbgemm::Quantize uses std::nearbyint.
// std::nearbyint results in nearest integer value according to the current
// rounding mode and the default rounding mode is rounds to even in half-way
// cases in most popular processor architectures like x86 and ARM. This is
// typically faster than an alternatives like std::round that rounds half-way
// cases away from zero, and can be consistent with SIMD implementations for
// example in x86 using _mm512_cvtps_epi32 or mm512_round_ps with
// _MM_FROUND_CUR_DIRECTION option that also follow the current rounding mode.
int32_t qvalue;
qvalue = fbgemm::Quantize<typename T::underlying, false /*LEGACY*/>(
value,
static_cast<int32_t>(zero_point),
static_cast<float>(scale),
/*result_precision=*/CHAR_BIT * sizeof(typename T::underlying));
return static_cast<T>(qvalue);
}
template <typename T, int precision>
void quantize_vec(
double scale,
int64_t zero_point,
const float* src,
T* dst,
size_t count) {
fbgemm::Quantize<typename T::underlying, false /*LEGACY*/>(
src,
(typename T::underlying*)dst,
count,
fbgemm::TensorQuantizationParams{
(float)scale, (int32_t)zero_point, precision});
}
template <typename T>
inline float dequantize_val(double scale, int64_t zero_point, T value) {
fbgemm::TensorQuantizationParams qparams;
qparams.scale = static_cast<float>(scale);
qparams.zero_point = static_cast<int32_t>(zero_point);
return fbgemm::Dequantize<typename T::underlying>(value.val_, qparams);
}
#else // USE_FBGEMM
#if defined(__ANDROID__) && !defined(__NDK_MAJOR__)
template <class T>
inline float Round(const float x) {
return ::nearbyintf(x);
}
inline double Round(const double x) {
return ::nearbyint(x);
}
#else
template <class T>
inline T Round(const T x) {
return std::nearbyint(x);
}
#endif
template <typename T>
T quantize_val(double scale, int64_t zero_point, float value) {
// std::nearbyint results in nearest integer value according to the current
// rounding mode and the default rounding mode is rounds to even in half-way
// cases in most popular processor architectures like x86 and ARM. This is
// typically faster than an alternatives like std::round that rounds half-way
// cases away from zero, and can be consistent with SIMD implementations for
// example in x86 using _mm512_cvtps_epi32 or mm512_round_ps with
// _MM_FROUND_CUR_DIRECTION option that also follow the current rounding mode.
int64_t qvalue;
constexpr int64_t qmin = std::numeric_limits<typename T::underlying>::min();
constexpr int64_t qmax = std::numeric_limits<typename T::underlying>::max();
float inv_scale = 1.0f / static_cast<float>(scale);
qvalue = static_cast<int64_t>(zero_point + Round(value * inv_scale));
qvalue = std::max<int64_t>(qvalue, qmin);
qvalue = std::min<int64_t>(qvalue, qmax);
return static_cast<T>(qvalue);
}
uint8_t quantize_val_arm(
const float scale,
const int32_t zero_point,
const float value) {
const int32_t qmin = std::numeric_limits<uint8_t>::min();
const int32_t qmax = std::numeric_limits<uint8_t>::max();
auto r = zero_point + static_cast<int32_t>(Round(value / scale));
r = std::max(r, qmin);
r = std::min(r, qmax);
return static_cast<uint8_t>(r);
}
template <typename T, int precision>
void quantize_vec(
double scale,
int64_t zero_point,
const float* src,
T* dst,
size_t count) {
checkZeroPoint<typename T::underlying>("quantize_vec", zero_point);
for (int64_t i = 0; i < count; ++i) {
dst[i] = quantize_val<T>(scale, zero_point, src[i]);
}
}
template <typename T>
CAFFE2_API float dequantize_val(double scale, int64_t zero_point, T value) {
// We need to convert the qint8 value to float to ensure the subtraction
// subexpression returns a float
return (static_cast<float>(value.val_) - zero_point) * scale;
}
#endif // USE_FBGEMM
template <typename SRC_T, typename DST_T>
DST_T requantize_val(
double src_scale,
int64_t src_zero_point,
double dst_scale,
int64_t dst_zero_point,
SRC_T src) {
const auto dq = dequantize_val<SRC_T>(src_scale, src_zero_point, src);
return quantize_val<DST_T>(dst_scale, dst_zero_point, dq);
}
template <typename DST_T>
DST_T requantize_from_int(double multiplier, int64_t zero_point, int64_t src) {
int64_t quantize_down =
zero_point + lrintf(src * static_cast<float>(multiplier));
int32_t min = std::numeric_limits<typename DST_T::underlying>::min();
int32_t max = std::numeric_limits<typename DST_T::underlying>::max();
return static_cast<DST_T>(
std::min<int64_t>(std::max<int64_t>(quantize_down, min), max));
}
template CAFFE2_API qint8
quantize_val<qint8>(double scale, int64_t zero_point, float value);
template CAFFE2_API quint8
quantize_val<quint8>(double scale, int64_t zero_point, float value);
template CAFFE2_API qint32
quantize_val<qint32>(double scale, int64_t zero_point, float value);
template CAFFE2_API void quantize_vec<c10::qint8>(
double scale,
int64_t zero_point,
const float* src,
c10::qint8* dst,
size_t count);
template CAFFE2_API void quantize_vec<c10::quint8>(
double scale,
int64_t zero_point,
const float* src,
c10::quint8* dst,
size_t count);
template CAFFE2_API void quantize_vec<c10::qint32, 32>(
double scale,
int64_t zero_point,
const float* src,
c10::qint32* dst,
size_t count);
template CAFFE2_API float dequantize_val<qint8>(
double scale,
int64_t zero_point,
qint8 value);
template CAFFE2_API float dequantize_val<quint8>(
double scale,
int64_t zero_point,
quint8 value);
template CAFFE2_API float dequantize_val<qint32>(
double scale,
int64_t zero_point,
qint32 value);
template CAFFE2_API qint8
requantize_val<qint8, qint8>(double, int64_t, double, int64_t, qint8);
template CAFFE2_API quint8
requantize_val<qint8, quint8>(double, int64_t, double, int64_t, qint8);
template CAFFE2_API qint32
requantize_val<qint8, qint32>(double, int64_t, double, int64_t, qint8);
template CAFFE2_API qint8
requantize_val<quint8, qint8>(double, int64_t, double, int64_t, quint8);
template CAFFE2_API quint8
requantize_val<quint8, quint8>(double, int64_t, double, int64_t, quint8);
template CAFFE2_API qint32
requantize_val<quint8, qint32>(double, int64_t, double, int64_t, quint8);
template CAFFE2_API qint8
requantize_val<qint32, qint8>(double, int64_t, double, int64_t, qint32);
template CAFFE2_API quint8
requantize_val<qint32, quint8>(double, int64_t, double, int64_t, qint32);
template CAFFE2_API qint32
requantize_val<qint32, qint32>(double, int64_t, double, int64_t, qint32);
template CAFFE2_API qint8 requantize_from_int<qint8>(double, int64_t, int64_t);
template CAFFE2_API quint8
requantize_from_int<quint8>(double, int64_t, int64_t);
template CAFFE2_API qint32
requantize_from_int<qint32>(double, int64_t, int64_t);
} // namespace native
} // namespace at