forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaffine_quantizer.h
115 lines (102 loc) · 3.11 KB
/
affine_quantizer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#pragma once
#include <ATen/ATen.h>
#include <ATen/native/DispatchStub.h>
namespace at {
namespace native {
Tensor quantize_tensor_per_tensor_affine(
Tensor rtensor,
Tensor qtensor,
double scale,
int64_t zero_point);
Tensor quantize_tensor_per_channel_affine(
Tensor qtensor,
Tensor rtensor,
Tensor scales,
Tensor zero_points,
int64_t axis);
Tensor dequantize_tensor_per_tensor_affine(
Tensor qtensor,
Tensor rtensor,
double scale,
int64_t zero_point);
Tensor dequantize_tensor_per_channel_affine(
Tensor qtensor,
Tensor rtensor,
Tensor scales,
Tensor zero_points,
int64_t axis);
using quantize_tensor_per_tensor_affine_fn =
void (*)(Tensor rtensor, Tensor qtensor, double scale, int64_t zero_point);
using quantize_tensor_per_channel_affine_fn = void (*)(
Tensor qtensor,
Tensor rtensor,
Tensor scales,
Tensor zero_points,
int64_t axis);
using dequantize_tensor_per_tensor_affine_fn =
void (*)(Tensor qtensor, Tensor rtensor, double scale, int64_t zero_point);
using dequantize_tensor_per_channel_affine_fn = void (*)(
Tensor qtensor,
Tensor rtensor,
Tensor scales,
Tensor zero_points,
int64_t axis);
DECLARE_DISPATCH(
quantize_tensor_per_tensor_affine_fn,
quantize_tensor_per_tensor_affine_stub);
DECLARE_DISPATCH(
quantize_tensor_per_channel_affine_fn,
quantize_tensor_per_channel_affine_stub);
DECLARE_DISPATCH(
dequantize_tensor_per_tensor_affine_fn,
dequantize_tensor_per_tensor_affine_stub);
DECLARE_DISPATCH(
dequantize_tensor_per_channel_affine_fn,
dequantize_tensor_per_channel_affine_stub);
// Quantize a float value into a uint value given scale and zero_point
template <typename T>
CAFFE2_API T quantize_val(double scale, int64_t zero_point, float value);
// TODO combine this with quantize_val once the numerics for ARM are aligned
// with it
uint8_t quantize_val_arm(
const float scale,
const int32_t zero_point,
const float value);
template <typename T, int precision = 8>
void quantize_vec(
double scale,
int64_t zero_point,
const float* src,
T* dst,
size_t count = 8);
template <typename T>
CAFFE2_API Tensor quantize_tensor(
Tensor rtensor,
Tensor qtensor,
double scale,
int64_t zero_point);
template <typename T>
CAFFE2_API float dequantize_val(double scale, int64_t zero_point, T value);
template <typename T>
CAFFE2_API float dequantize_vec(
double scale,
int64_t zero_point,
const T* src,
float* dst,
size_t count = 8);
template <typename T>
CAFFE2_API Tensor dequantize_tensor(
Tensor qtensor,
Tensor rtensor,
double scale,
int64_t zero_point);
template <typename SRC_T, typename DST_T>
CAFFE2_API DST_T requantize_val(double, int64_t, double, int64_t, SRC_T src);
// Given a multiplier and a zero_point, requantize int32_t computed values back
// to quantized values. See comment above
// make_per_tensor_affine_quantizer function for the usage of int64_t
template <typename DST_T>
CAFFE2_API DST_T
requantize_from_int(double multiplier, int64_t zero_point, int64_t src);
} // namespace native
} // namespace at