forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRReLU.cu
134 lines (114 loc) · 2.99 KB
/
RReLU.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <algorithm>
#include <utility>
#include <THCUNN/THCUNN.h>
#include <TH/THHalf.h>
#include <THC/THCNumerics.cuh>
#include <THC/THCApply.cuh>
#include <THCUNN/common.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <curand.h>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
// copied from cutorch/lib/THC/THCTensorRandom.cu
#define MAX_NUM_BLOCKS 64
#define BLOCK_SIZE 256
#define NUM_BLOCKS(n) \
(std::min((int)THCCeilDiv(n, (ptrdiff_t)BLOCK_SIZE), MAX_NUM_BLOCKS))
template<typename T>
inline T __device__ curand_uniform_type(curandStatePhilox4_32_10_t *state);
template <>
inline THHalf __device__ curand_uniform_type<THHalf>(curandStatePhilox4_32_10_t *state) {
auto rand = curand_uniform4(state);
return ScalarConvert<float, THHalf>::to(rand.x);
}
template <>
inline float __device__ curand_uniform_type<float>(curandStatePhilox4_32_10_t *state) {
auto rand = curand_uniform4(state);
return rand.x;
}
template <>
inline double __device__ curand_uniform_type<double>(curandStatePhilox4_32_10_t *state) {
auto rand = curand_uniform2_double(state);
return rand.x;
}
template <typename T>
__global__ void rreluUpdateOutputTrain(int n, std::pair<uint64_t, uint64_t> seeds,
T *input, T* noise, T *output, double a, double b)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(seeds.first, idx, seeds.second, &state);
CUDA_KERNEL_LOOP(i, n)
{
if (input[i] <= 0)
{
T r = curand_uniform_type<T>(&state);
r = ScalarConvert<double, T>::to(r * (b-a) + a);
output[i] = input[i] * r;
noise[i] = r;
}
else
{
output[i] = input[i];
noise[i] = ScalarConvert<int, T>::to(1);
}
}
}
template <typename T>
struct RReLUUpdateOutputEval_functor
{
const T negSlope_;
RReLUUpdateOutputEval_functor(T negSlope)
: negSlope_(negSlope)
{}
__device__ __forceinline__ void operator()(T *out, T *in)
{
const T x = *in;
const T r = x <= 0 ? negSlope_ : ScalarConvert<int, T>::to(1);
*out = x * r;
}
};
template <typename T>
struct RReLUUpdateOutputEvalIP_functor
{
const T negSlope_;
RReLUUpdateOutputEvalIP_functor(T negSlope)
: negSlope_(negSlope)
{}
__device__ __forceinline__ void operator()(T *x)
{
if (*x <= 0)
{
*x = *x * negSlope_;
}
}
};
template <typename T>
struct RReLUupdateGradInputEval_functor
{
const T negSlope_;
RReLUupdateGradInputEval_functor(T negSlope)
: negSlope_(negSlope)
{}
__device__ __forceinline__ void operator()(T *gradIn, T *gradOut, T *in)
{
*gradIn = (*in) <= 0 ? (*gradOut) * negSlope_ : (*gradOut);
}
};
template <typename T>
struct RReLUupdateGradInputEvalIP_functor
{
const T negSlope_;
RReLUupdateGradInputEvalIP_functor(T negSlope)
: negSlope_(negSlope)
{}
__device__ __forceinline__ void operator()(T *gradOut, T *in)
{
if (*in <= 0)
{
*gradOut = (*gradOut) * negSlope_;
}
}
};
#include <THCUNN/generic/RReLU.cu>
#include <THC/THCGenerateFloatTypes.h>