forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_overrides.py
835 lines (798 loc) · 49.1 KB
/
_overrides.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
"""
Python implementation of __torch_function__
While most of the torch API and handling for __torch_function__ happens
at the C++ level, some of the torch API is written in Python so we need
python-level handling for __torch_function__ overrides as well. The main
developer-facing functionality in this file are handle_torch_function and
has_torch_function. See torch/functional.py and test/test_overrides.py
for usage examples.
NOTE: heavily inspired by NumPy's ``__array_function__`` (see:
https://github.com/pytorch/pytorch/issues/24015 and
https://www.numpy.org/neps/nep-0018-array-function-protocol.html
)
If changing this file in a way that can affect ``__torch_function__`` overhead,
please report the benchmarks in ``benchmarks/overrides_benchmark``. See the
instructions in the ``README.md`` in that directory.
"""
import __future__
import collections
import torch
import types
def get_ignored_functions():
"""Return public functions that cannot be overrided by __torch_function__
Returns
-------
A tuple of functions that are publicly available in the torch API but cannot
be overrided with __torch_function__. Mostly this is because none of the
arguments of these functions are tensors or tensor-likes.
"""
return (
torch.typename,
torch.is_tensor,
torch.is_storage,
torch.set_default_tensor_type,
torch.set_rng_state,
torch.get_rng_state,
torch.manual_seed,
torch.initial_seed,
torch.seed,
torch.save,
torch.load,
torch.set_printoptions,
torch.fork,
torch.get_default_dtype,
torch.get_num_interop_threads,
torch.get_num_threads,
torch.init_num_threads,
torch.import_ir_module,
torch.import_ir_module_from_buffer,
torch.is_anomaly_enabled,
torch.is_grad_enabled,
torch.merge_type_from_type_comment,
torch.parse_ir,
torch.parse_schema,
torch.parse_type_comment,
torch.set_anomaly_enabled,
torch.set_flush_denormal,
torch.set_num_interop_threads,
torch.set_num_threads,
torch.wait,
torch.as_tensor,
torch.from_numpy,
torch.get_device,
torch.tensor,
torch.default_generator,
torch.has_cuda,
torch.has_cudnn,
torch.has_lapack,
torch.cpp,
torch.device,
torch.dtype,
torch.finfo,
torch.has_mkl,
torch.has_mkldnn,
torch.has_openmp,
torch.iinfo,
torch.memory_format,
torch.qscheme,
torch.set_grad_enabled,
torch.no_grad,
torch.enable_grad,
torch.layout,
torch.align_tensors,
torch.arange,
torch.as_strided,
torch.bartlett_window,
torch.blackman_window,
torch.can_cast,
torch.cudnn_affine_grid_generator,
torch.cudnn_batch_norm,
torch.cudnn_convolution,
torch.cudnn_convolution_transpose,
torch.cudnn_grid_sampler,
torch.cudnn_is_acceptable,
torch.empty,
torch.empty_meta,
torch.empty_strided,
torch.empty_quantized,
torch.eye,
torch.from_file,
torch.full,
torch.hamming_window,
torch.hann_window,
torch.linspace,
torch.logspace,
torch.mkldnn_adaptive_avg_pool2d,
torch.mkldnn_convolution,
torch.mkldnn_convolution_backward_weights,
torch.mkldnn_max_pool2d,
torch.ones,
torch.promote_types,
torch.rand,
torch.randn,
torch.randint,
torch.randperm,
torch.range,
torch.sparse_coo_tensor,
torch.vander,
torch.zeros,
torch.nn.functional.assert_int_or_pair,
torch.nn.functional.boolean_dispatch,
torch.nn.functional.division,
torch.nn.functional.upsample,
torch.nn.functional.upsample_bilinear,
torch.nn.functional.upsample_nearest,
torch.nn.functional.has_torch_function,
torch.nn.functional.handle_torch_function,
torch.nn.functional.sigmoid,
torch.nn.functional.hardsigmoid,
torch.nn.functional.tanh,
torch.set_autocast_enabled,
torch.is_autocast_enabled,
torch.clear_autocast_cache,
torch.autocast_increment_nesting,
torch.autocast_decrement_nesting,
torch.nn.functional.hardswish,
torch.is_vulkan_available,
torch.is_deterministic,
torch.set_deterministic
)
def get_testing_overrides():
"""Return a dict containing dummy overrides for all overridable functions
Returns
-------
A dictionary that maps overridable functions in the PyTorch API to
lambda functions that have the same signature as the real function
and unconditionally return -1. These lambda functions are useful
for testing API coverage for a type that defines __torch_function__.
"""
# Every function in the PyTorch API that can be overriden needs an entry
# in this dict.
#
# Optimally we would use inspect to get the function signature and define
# the lambda function procedurally but that is blocked by generating
# function signatures for native kernels that can be consumed by inspect.
# See Issue #28233.
return {
torch.abs: lambda input, out=None: -1,
torch.absolute: lambda input, out=None: -1,
torch.adaptive_avg_pool1d: lambda input, output_size: -1,
torch.adaptive_max_pool1d: lambda inputs, output_size: -1,
torch.acos: lambda input, out=None: -1,
torch.acosh: lambda input, out=None: -1,
torch.add: lambda input, other, out=None: -1,
torch.addbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1,
torch.addcdiv: lambda input, tensor1, tensor2, value=1, out=None: -1,
torch.addcmul: lambda input, tensor1, tensor2, value=1, out=None: -1,
torch.addmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
torch.addmv: lambda input, mat, vec, beta=1, alpha=1, out=None: -1,
torch.addr: lambda input, vec1, vec2, beta=1, alpha=1, out=None: -1,
torch.affine_grid_generator: lambda theta, size, align_corners: -1,
torch.all: lambda input: -1,
torch.allclose: lambda input, other, trol=1e-05, atol=1e-08, equal_nan=False: -1,
torch.alpha_dropout: lambda input, p, train, inplace=False: -1,
torch.angle: lambda input, out=None: -1,
torch.any: lambda input, dim, keepdim=False, out=None: -1,
torch.argmax: lambda input: -1,
torch.argmin: lambda input: -1,
torch.argsort: lambda input: -1,
torch.asin: lambda input, out=None: -1,
torch.asinh: lambda input, out=None: -1,
torch.atan: lambda input, out=None: -1,
torch.atan2: lambda input, other, out=None: -1,
torch.atanh: lambda input, out=None: -1,
torch.avg_pool1d: lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True: -1,
torch.baddbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1,
torch.batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled: -1,
torch.batch_norm_backward_elemt: lambda grad_out, input, mean, invstd, weight, mean_dy, mean_dy_xmu: -1,
torch.batch_norm_backward_reduce: lambda grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g: -1,
torch.batch_norm_elemt: lambda input, weight, bias, mean, invstd, eps: -1,
torch.batch_norm_gather_stats: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1,
torch.batch_norm_gather_stats_with_counts: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1,
torch.batch_norm_stats: lambda input, eps: -1,
torch.batch_norm_update_stats: lambda input, running_mean, running_var, momentum: -1,
torch.bernoulli: lambda input, generator=None, out=None: -1,
torch.bilinear: lambda input1, input2, weight, bias: -1,
torch.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None, reduce=None,
reduction='mean', pos_weight=None: -1),
torch.bincount: lambda input, weights=None, minlength=0: -1,
torch.binomial: lambda count, prob, generator=None: -1,
torch.bitwise_and: lambda input, other, out=None: -1,
torch.bitwise_not: lambda input, out=None: -1,
torch.bitwise_or: lambda input, other, out=None: -1,
torch.bitwise_xor: lambda input, other, out=None: -1,
torch.block_diag: lambda *tensors: -1,
torch.bmm: lambda input, mat2, out=None: -1,
torch.broadcast_tensors: lambda *tensors: -1,
torch.bucketize: lambda input, boundaries, out_int32=False, right=False, out=None: -1,
torch.cartesian_prod: lambda *tensors: -1,
torch.cat: lambda tensors, dim=0, out=None: -1,
torch.cdist: lambda x1, c2, p=2, compute_mode=None: -1,
torch.ceil: lambda input, out=None: -1,
torch.celu: lambda input, alhpa=1., inplace=False: -1,
torch.chain_matmul: lambda *matrices: -1,
torch.channel_shuffle: lambda input, groups : -1,
torch.cholesky: lambda input, upper=False, out=None: -1,
torch.cholesky_inverse: lambda input, upper=False, out=None: -1,
torch.cholesky_solve: lambda input1, input2, upper=False, out=None: -1,
torch.chunk: lambda input, chunks, dim=0: -1,
torch.clamp: lambda input, min, max, out=None: -1,
torch.clamp_min: lambda input, min, out=None: -1,
torch.clamp_max: lambda input, max, out=None: -1,
torch.clone: lambda input: -1,
torch.combinations: lambda input, r=2, with_replacement=False: -1,
torch.conj: lambda input, out=None: -1,
torch.constant_pad_nd: lambda input, pad, value=0: -1,
torch.conv1d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
torch.conv2d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
torch.conv3d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
torch.convolution: lambda input, weight, bias, stride, padding, dilation, transposed, output_adding, groups: -1,
torch.conv_tbc: lambda input, weight, bias, pad=0: -1,
torch.conv_transpose1d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
torch.conv_transpose2d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
torch.conv_transpose3d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
torch.cos: lambda input, out=None: -1,
torch.cosine_embedding_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1,
torch.cosh: lambda input, out=None: -1,
torch.cosine_similarity: lambda x1, x2, dim=1, eps=1e-8: -1,
torch.count_nonzero: lambda input: -1,
torch.cross: lambda input, other, dim=-1, out=None: -1,
torch.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean',
zero_infinity=False: -1),
torch.cummax: lambda input, dim, out=None: -1,
torch.cummin: lambda input, dim, out=None: -1,
torch.cumprod: lambda input, dim, out=None, dtype=None: -1,
torch.cumsum: lambda input, dim, out=None, dtype=None: -1,
torch.logcumsumexp: lambda input, dim, out=None: -1,
torch.deg2rad: lambda input, out=None: -1,
torch.dequantize: lambda input: -1,
torch.det: lambda input: -1,
torch.detach: lambda input: -1,
torch.diag: lambda input, diagonal=0, out=None: -1,
torch.diag_embed: lambda input, diagonal=0, out=None: -1,
torch.diagflat: lambda input, offset=0: -1,
torch.diagonal: lambda input, offset=0, dim1=0, dim2=1: -1,
torch.digamma: lambda input, out=None: -1,
torch.dist: lambda input, other, p=2: -1,
torch.div: lambda input, other, out=None: -1,
torch.dot: lambda mat1, mat2: -1,
torch.dropout: lambda input, p, train, inplace=False: -1,
torch.dsmm: lambda input, mat2: -1,
torch.hsmm: lambda mat1, mat2: -1,
torch.eig: lambda input, eigenvectors=False, out=None: -1,
torch.einsum: lambda equation, *operands: -1,
torch.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False,
sparse=False: -1),
torch.embedding_bag: (lambda input, weight, offsets, max_norm=None, norm_type=2, scale_grad_by_freq=False,
mode='mean', sparse=False, per_sample_weights=None: -1),
torch.empty_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
torch.eq: lambda input, other, out=None: -1,
torch.equal: lambda input, other: -1,
torch.erf: lambda input, out=None: -1,
torch.erfc: lambda input, out=None: -1,
torch.erfinv: lambda input, out=None: -1,
torch.exp: lambda input, out=None: -1,
torch.expm1: lambda input, out=None: -1,
torch.fake_quantize_per_channel_affine: lambda input, scale, zero_point, axis, quant_min, quant_max: -1,
torch.fake_quantize_per_tensor_affine: lambda input, scale, zero_point, quant_min, quant_max: -1,
torch.fbgemm_linear_fp16_weight: lambda input, packed_weight, bias: -1,
torch.fbgemm_linear_fp16_weight_fp32_activation: lambda input, packed_weight, bias: -1,
torch.fbgemm_linear_int8_weight: lambda input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias: -1,
torch.fbgemm_linear_int8_weight_fp32_activation: (lambda input, weight, packed, col_offsets, weight_scale,
weight_zero_point, bias: -1),
torch.fbgemm_linear_quantize_weight: lambda input: -1,
torch.fbgemm_pack_gemm_matrix_fp16: lambda input: -1,
torch.fbgemm_pack_quantized_matrix: lambda input, K, N: -1,
torch.feature_alpha_dropout: lambda input, p, train: -1,
torch.feature_dropout: lambda input, p, train: -1,
torch.fft: lambda input, signal_ndim, normalized=False: -1,
torch.flatten: lambda input, start_dim=0, end_dim=-1: -1,
torch.flip: lambda input, dims: -1,
torch.fliplr: lambda input: -1,
torch.flipud: lambda input: -1,
torch.frobenius_norm: lambda input, dim=None, keepdim=False, out=None: -1,
torch.floor: lambda input, out=None: -1,
torch.floor_divide: lambda input, other: -1,
torch.fmod: lambda input, other, out=None: -1,
torch.frac: lambda input, out=None: -1,
torch.full_like: lambda input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1,
torch.functional.lu_unpack: lambda LU_data, LU_pivots, unpack_data=True, unpack_pivots=True: -1,
torch.gather: lambda input, dim, index, out=None, sparse_grad=False: -1,
torch.ge: lambda input, other, out=None: -1,
torch.geqrf: lambda input, out=None: -1,
torch.ger: lambda input, vec2, out=None: -1,
torch.grid_sampler: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
torch.grid_sampler_2d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
torch.grid_sampler_3d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
torch.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05, cudnn_enabled=True: -1,
torch.gru: lambda input, hx, params, has_biases, num_layers, gropout, train, bidirectional, batch_first: -1,
torch.gru_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
torch.gt: lambda input, other, out=None: -1,
torch.hardshrink: lambda input, lambd=0.5: -1,
torch.hinge_embedding_loss: lambda input, target, margin=1.0, size_average=None, reduce=None, reduction='mean': -1,
torch.histc: lambda input, bins=100, min=0, max=0, out=None: -1,
torch.hspmm: lambda mat1, mat2, out=None: -1,
torch.ifft: lambda input, signal_ndim, normalized=False: -1,
torch.imag: lambda input, out=None: -1,
torch.index_add: lambda input, dim, index, source: -1,
torch.index_copy: lambda input, dim, index, source: -1,
torch.index_put: lambda input, indices, values, accumulate=False: -1,
torch.index_select: lambda input, dim, index, out=None: -1,
torch.index_fill: lambda input, dim, index, value: -1,
torch.isfinite: lambda tensor: -1,
torch.isinf: lambda tensor: -1,
torch.instance_norm: (lambda input, running_mean, running_var, weight, bias, use_input_stats, momentum, eps,
cudnn_enabled: -1),
torch.int_repr: lambda input: -1,
torch.inverse: lambda input, out=None: -1,
torch.irfft: lambda input, signal_ndim, normalized=False, onesided=True, signal_sizes=None: -1,
torch.is_complex: lambda input: -1,
torch.is_distributed: lambda input: -1,
torch.is_floating_point: lambda input: -1,
torch.is_nonzero: lambda input: -1,
torch.is_same_size: lambda input, other: -1,
torch.is_signed: lambda input: -1,
torch.isclose: lambda input, other, rtol=1e-05, atol=1e-08, equal_nan=False: -1,
torch.isnan: lambda input: -1,
torch.istft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True,
normalized=False, onesided=True, length=None: -1),
torch.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1,
torch.kthvalue: lambda input, k, dim=None, keepdim=False, out=None: -1,
torch.layer_norm: lambda input, normalized_shape, weight=None, bias=None, esp=1e-05, cudnn_enabled=True: -1,
torch.le: lambda input, other, out=None: -1,
torch.lerp: lambda input, end, weight, out=None: -1,
torch.lgamma: lambda input, out=None: -1,
torch.lobpcg: lambda input, k=None, B=None, X=None, n=None, iK=None, niter=None, tol=None, largest=None, method=None,
tracker=None, ortho_iparams=None, ortho_fparams=None, ortho_bparams=None: -1,
torch.log: lambda input, out=None: -1,
torch.log_softmax: lambda input, dim, dtype: -1,
torch.log10: lambda input, out=None: -1,
torch.log1p: lambda input, out=None: -1,
torch.log2: lambda input, out=None: -1,
torch.logaddexp: lambda input, other, out=None: -1,
torch.logaddexp2: lambda input, other, out=None: -1,
torch.logdet: lambda input: -1,
torch.logical_and: lambda input, other, out=None: -1,
torch.logical_not: lambda input, out=None: -1,
torch.logical_or: lambda input, other, out=None: -1,
torch.logical_xor: lambda input, other, out=None: -1,
torch.logsumexp: lambda input, names, keepdim, out=None: -1,
torch.lstm: lambda data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional: -1,
torch.lstm_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
torch.lstsq: lambda input, A, out=None: -1,
torch.lt: lambda input, other, out=None: -1,
torch.lu: lambda A, pivot=True, get_infos=False, out=None: -1,
torch.lu_solve: lambda input, LU_data, LU_pivots, out=None: -1,
torch.margin_ranking_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1,
torch.masked_fill: lambda input, mask, value: -1,
torch.masked_scatter: lambda input, mask, source: -1,
torch.masked_select: lambda input, mask, out=None: -1,
torch.matmul: lambda input, other, out=None: -1,
torch.matrix_power: lambda input, n: -1,
torch.matrix_rank: lambda input, tol=None, symmetric=False: -1,
torch.max: lambda input, out=None: -1,
torch.max_pool1d: lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1,
torch.max_pool2d: lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1,
torch.max_pool3d: lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1,
torch.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.mean: lambda input: -1,
torch.median: lambda input: -1,
torch.meshgrid: lambda *tensors, **kwargs: -1,
torch.min: lambda input, out=None: -1,
torch.miopen_batch_norm: (lambda input, weight, bias, running_mean, running_var, training,
exponential_average_factor, epsilon: -1),
torch.miopen_convolution: lambda input, weight, bias, padding, stride, dilation, groups, benchmark, deterministic: -1,
torch.miopen_convolution_transpose: (lambda input, weight, bias, padding, output_padding, stride, dilation,
groups, benchmark, deterministic: -1),
torch.miopen_depthwise_convolution: (lambda input, weight, bias, padding, stride, dilation, groups, benchmark,
deterministic: -1),
torch.miopen_rnn: (lambda input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first,
dropout, train, bidirectional, batch_sizes, dropout_state: -1),
torch.mm: lambda input, mat2, out=None: -1,
torch.mode: lambda input: -1,
torch.mul: lambda input, other, out=None: -1,
torch.multinomial: lambda input, num_samples, replacement=False, out=None: -1,
torch.mv: lambda input, vec, out=None: -1,
torch.mvlgamma: lambda input, p: -1,
torch.narrow: lambda input, dim, start, length: -1,
torch.native_batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps: -1,
torch.native_layer_norm: lambda input, weight, bias, M, N, eps: -1,
torch.native_group_norm: lambda input, weight, bias, N, C, HxW, group, eps: -1,
torch.native_norm: lambda input, p=2: -1,
torch.ne: lambda input, other, out=None: -1,
torch.neg: lambda input, out=None: -1,
torch.nn.functional.adaptive_avg_pool2d: lambda input, output_size: -1,
torch.nn.functional.adaptive_avg_pool3d: lambda input, output_size: -1,
torch.nn.functional.adaptive_max_pool1d: lambda input, output_size, return_indices=False: -1,
torch.nn.functional.adaptive_max_pool1d_with_indices: lambda input, output_size, return_indices=False: -1,
torch.nn.functional.adaptive_max_pool2d: lambda input, output_size, return_indices=False: -1,
torch.nn.functional.adaptive_max_pool2d_with_indices: lambda input, output_size, return_indices=False: -1,
torch.nn.functional.adaptive_max_pool3d: lambda input, output_size, return_indices=False: -1,
torch.nn.functional.adaptive_max_pool3d_with_indices: lambda input, output_size, return_indices=False: -1,
torch.nn.functional.affine_grid: lambda theta, size, align_corners=None: -1,
torch.nn.functional.alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1,
torch.nn.functional.avg_pool2d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False,
count_include_pad=True, divisor_override=None: -1),
torch.nn.functional.avg_pool3d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False,
count_include_pad=True, divisor_override=None: -1),
torch.nn.functional.batch_norm: (lambda input, running_mean, running_var, weight=None, bias=None, training=False,
momentum=0.1, eps=1e-05: -1),
torch.nn.functional.bilinear: lambda input1, input2, weight, bias=None: -1,
torch.nn.functional.binary_cross_entropy: (lambda input, target, weight=None, size_average=None, reduce=None,
reduction="mean": -1),
torch.nn.functional.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None,
reduce=None, reduction="mean", pos_weight=None: -1),
torch.nn.functional.celu: lambda input, alpha=1.0, inplace=False: -1,
torch.nn.functional.cosine_embedding_loss: (lambda input1, input2, target, margin=0, size_average=None,
reduce=None, reduction='mean': -1),
torch.nn.functional.cross_entropy: (lambda input, target, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction="mean": -1),
torch.nn.functional.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0,
reduction='mean', zero_infinity=False: -1),
torch.nn.functional.dropout: lambda input, p=0.5, training=True, inplace=False: -1,
torch.nn.functional.dropout2d: lambda input, p=0.5, training=True, inplace=False: -1,
torch.nn.functional.dropout3d: lambda input, p=0.5, training=True, inplace=False: -1,
torch.nn.functional.elu: lambda input, alpha=1.0, inplace=False: -1,
torch.nn.functional.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0,
scale_grad_by_freq=False, sparse=False: -1),
torch.nn.functional.embedding_bag: (lambda input, weight, offsets=None, max_norm=None, norm_type=2,
scale_grad_by_freq=False, mode='mean', sparse=False, per_sample_weights=None,
include_last_offset=False: -1),
torch.nn.functional.feature_alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1,
torch.nn.functional.fold: lambda input, output_size, kernel_size, dilation=1, padding=0, stride=1: -1,
torch.nn.functional.fractional_max_pool2d: (lambda input, kernel_size, output_size=None, output_ratio=None,
return_indices=False, _random_samples=None: -1),
torch.nn.functional.fractional_max_pool2d_with_indices: (
lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False,
_random_samples=None: -1),
torch.nn.functional.fractional_max_pool3d: (lambda input, kernel_size, output_size=None, output_ratio=None,
return_indices=False, _random_samples=None: -1),
torch.nn.functional.fractional_max_pool3d_with_indices: (
lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False,
_random_samples=None: -1),
torch.nn.functional.gelu: lambda input: -1,
torch.nn.functional.glu: lambda input, dim=-1: -1,
torch.nn.functional.grid_sample: lambda input, grid, mode='bilinear', padding_mode='zeros', align_corners=None: -1,
torch.nn.functional.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05: -1,
torch.nn.functional.gumbel_softmax: lambda logits, tau=1, hard=False, eps=1e-10, dim=-1: -1,
torch.nn.functional.hardshrink: lambda input, lambd=0.5: -1,
torch.nn.functional.hardtanh: lambda input, min_val=-1., max_val=1., inplace=False: -1,
torch.nn.functional.hinge_embedding_loss: (lambda input, target, margin=1.0, size_average=None, reduce=None,
reduction='mean': -1),
torch.nn.functional.instance_norm: (lambda input, running_mean=None, running_var=None, weight=None, bias=None,
use_input_stats=True, momentum=0.1, eps=1e-05: -1),
torch.nn.functional.interpolate: (lambda input, size=None, scale_factor=None, mode='nearest', align_corners=None,
recompute_scale_factor=None: -1),
torch.nn.functional.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1,
torch.nn.functional.l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
torch.nn.functional.layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1,
torch.nn.functional.leaky_relu: lambda input, negative_slope=0.01, inplace=False: -1,
torch.nn.functional.linear: lambda input, weight, bias=None: -1,
torch.nn.functional.local_response_norm: lambda input, size, alpha=0.0001, beta=0.75, k=1.0: -1,
torch.nn.functional.log_softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
torch.nn.functional.logsigmoid: lambda input: -1,
torch.nn.functional.lp_pool1d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
torch.nn.functional.lp_pool2d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
torch.nn.functional.margin_ranking_loss: (lambda input1, input2, target, margin=0, size_average=None,
reduce=None, reduction='mean': -1),
torch.nn.functional.max_pool1d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.nn.functional.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.nn.functional.max_pool2d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.nn.functional.max_pool2d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.nn.functional.max_pool3d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.nn.functional.max_pool3d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False: -1),
torch.nn.functional.max_unpool1d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
torch.nn.functional.max_unpool2d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
torch.nn.functional.max_unpool3d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
torch.nn.functional.mse_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
torch.nn.functional.multi_head_attention_forward: (
lambda query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v,
add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=True, key_padding_mask=None,
need_weights=True, attn_mask=None, use_separate_proj_weight=False, q_proj_weight=None, k_proj_weight=None,
v_proj_weight=None, static_k=None, static_v=None: -1),
torch.nn.functional.multi_margin_loss: (lambda input, target, p=1, margin=1.0, weight=None, size_average=None,
reduce=None, reduction='mean': -1),
torch.nn.functional.multilabel_margin_loss: (lambda input, target, size_average=None, reduce=None,
reduction='mean': -1),
torch.nn.functional.multilabel_soft_margin_loss: (lambda input, target, weight=None, size_average=None,
reduce=None, reduction='mean': -1),
torch.nn.functional.nll_loss: (lambda input, target, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean': -1),
torch.nn.functional.normalize: lambda input, p=2, dim=1, eps=1e-12, out=None: -1,
torch.nn.functional.one_hot: lambda tensor, num_classes=-1: -1,
torch.nn.functional.pad: lambda input, pad, mode='constant', value=0: -1,
torch.nn.functional.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1,
torch.nn.functional.poisson_nll_loss: (lambda input, target, log_input=True, full=False, size_average=None,
eps=1e-08, reduce=None, reduction='mean': -1),
torch.nn.functional.prelu: lambda input, weight: -1,
torch.nn.functional.relu: lambda input, inplace=False: -1,
torch.nn.functional.relu6: lambda input, inplace=False: -1,
torch.nn.functional.rrelu: lambda input, lower=0.125, upper=0.3333333333333333, training=False, inplace=False: -1,
torch.nn.functional.selu: lambda input, inplace=False: -1,
torch.nn.functional.smooth_l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
torch.nn.functional.soft_margin_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
torch.nn.functional.softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
torch.nn.functional.softmin: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
torch.nn.functional.softplus: lambda input, beta=1, threshold=20: -1,
torch.nn.functional.softshrink: lambda input, lambd=0.5: -1,
torch.nn.functional.softsign: lambda input: -1,
torch.nn.functional.tanhshrink: lambda input: -1,
torch.nn.functional.threshold: lambda input, threshold, value, inplace=False: -1,
torch.nn.functional.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06,
swap=False, size_average=None, reduce=None, reduction='mean': -1),
torch.nn.functional.unfold: lambda input, kernel_size, dilation=1, padding=0, stride=1: -1,
torch.nonzero: lambda input, as_tuple=False: -1,
torch.norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1,
torch.norm_except_dim: lambda v, pow=2, dim=0: -1,
torch.normal: lambda mean, std, out=None: -1,
torch.nuclear_norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1,
torch.numel: lambda input: -1,
torch.orgqr: lambda input1, input2: -1,
torch.ormqr: lambda input, input2, input3, left=True, transpose=False: -1,
torch.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1,
torch.pca_lowrank: lambda input, q=None, center=True, niter=2: -1,
torch.pdist: lambda input, p=2: -1,
torch.pinverse: lambda input, rcond=1e-15: -1,
torch.pixel_shuffle: lambda input, upscale_factor: -1,
torch.poisson: lambda input, generator=None: -1,
torch.poisson_nll_loss: lambda input, target, log_input, full, eps, reduction: -1,
torch.polygamma: lambda input, n, out=None: -1,
torch.prelu: lambda input, weight: -1,
torch.ones_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
torch.pow: lambda input, exponent, out=None: -1,
torch.prod: lambda input: -1,
torch.q_per_channel_axis: lambda input: -1,
torch.q_per_channel_scales: lambda input: -1,
torch.q_per_channel_zero_points: lambda input: -1,
torch.q_scale: lambda input: -1,
torch.q_zero_point: lambda input: -1,
torch.qr: lambda input, some=True, out=None: -1,
torch.quantize_per_channel: lambda input, scales, zero_points, axis, dtype: -1,
torch.quantize_per_tensor: lambda input, scale, zero_point, dtype: -1,
torch.quantized_batch_norm: lambda input, weight, bias, mean, var, eps, output_scale, output_zero_point: -1,
torch.quantized_gru_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
torch.quantized_lstm_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
torch.quantized_max_pool2d: lambda input, kernel_size, stride, padding, dilation, ceil_mode=False: -1,
torch.quantized_rnn_relu_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
torch.quantized_rnn_tanh_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
torch.rad2deg: lambda input, out=None: -1,
torch.rand_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
torch.randint_like: lambda input, low, high, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1,
torch.randn_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
torch.real: lambda input, out=None: -1,
torch.view_as_real: lambda input: -1,
torch.view_as_complex: lambda input: -1,
torch.reciprocal: lambda input, out=None: -1,
torch.relu: lambda input, inplace=False: -1,
torch.remainder: lambda input, other, out=None: -1,
torch.renorm: lambda input, p, dim, maxnorm, out=None: -1,
torch.repeat_interleave: lambda input, repeats, dim=None: -1,
torch.reshape: lambda input, shape: -1,
torch.result_type: lambda tensor1, tensor2: -1,
torch.rfft: lambda input, signal_ndim, normalized=False, onesided=True: -1,
torch.rnn_relu: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
torch.rnn_relu_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
torch.rnn_tanh: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
torch.rnn_tanh_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
torch.roll: lambda input, shifts, dims=None: -1,
torch.rot90: lambda input, k, dims: -1,
torch.round: lambda input, out=None: -1,
torch.rrelu: lambda input, lower=1. / 8, upper=1. / 3, training=False, inplace=False: -1,
torch.rsqrt: lambda input, out=None: -1,
torch.rsub: lambda input, other, alpha=1: -1,
torch.saddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
torch.scalar_tensor: lambda s, dtype=None, layour=None, device=None, pin_memory=None: -1,
torch.scatter: lambda input, dim, index, src: -1,
torch.scatter_add: lambda input, dim, index, src: -1,
torch.searchsorted: lambda sorted_sequence, input, out_int32=False, right=False, out=None: -1,
torch.select: lambda input, dim, index: -1,
torch.selu: lambda input, inplace=False: -1,
torch.sigmoid: lambda input, out=None: -1,
torch.sign: lambda input, out=None: -1,
torch.sin: lambda input, out=None: -1,
torch.sinh: lambda input, out=None: -1,
torch.slogdet: lambda input: -1,
torch.smm: lambda input, mat2: -1,
torch.spmm: lambda input, mat2: -1,
torch.softmax: lambda input, dim, dtype=None: -1,
torch.solve: lambda input, A, out=None: -1,
torch.sort: lambda input, dim=-1, descending=False, out=None: -1,
torch.split: lambda tensor, split_size_or_sections, dim=0: -1,
torch.split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1,
torch.sqrt: lambda input, out=None: -1,
torch.square: lambda input, out=None: -1,
torch.squeeze: lambda input, dim=None, out=None: -1,
torch.sspaddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
torch.stack: lambda tensors, dim=0, out=None: -1,
torch.std: lambda input: -1,
torch.std_mean: lambda input: -1,
torch.stft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True,
pad_mode='reflect', normalized=False, onesided=True: -1),
torch.sub: lambda input, other, out=None: -1,
torch.sum: lambda input: -1,
torch.svd: lambda input, some=True, compute_uv=True, out=None: -1,
torch.svd_lowrank: lambda input, q=6, niter=2, M=None: -1,
torch.symeig: lambda input, eigenvectors=False, upper=True, out=None: -1,
torch.t: lambda input: -1,
torch.take: lambda input, index: -1,
torch.tan: lambda input, out=None: -1,
torch.tanh: lambda input, out=None: -1,
torch.tensordot: lambda a, b, dims=2: -1,
torch.threshold: lambda input, threshold, value, inplace=False: -1,
torch.topk: lambda input, k, dim=-1, descending=False, out=None: -1,
torch.trace: lambda input: -1,
torch.transpose: lambda input, dim0, dim1: -1,
torch.trapz: lambda y, x, dim=-1: -1,
torch.triangular_solve: lambda input, A, upper=True, transpose=False, unitriangular=False: -1,
torch.tril: lambda input, diagonal=0, out=None: -1,
torch.tril_indices: lambda row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided: -1,
torch.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False,
size_average=None, reduce=None, reduction='mean': -1),
torch.triu: lambda input, diagonal=0, out=None: -1,
torch.triu_indices: lambda row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided: -1,
torch.true_divide: lambda input, other: -1,
torch.trunc: lambda input, out=None: -1,
torch.unbind: lambda input, dim=0: -1,
torch.unique: lambda input, sorted=True, return_inverse=False, return_counts=False, dim=None: -1,
torch.unique_consecutive: lambda input, return_inverse=False, return_counts=False, dim=None: -1,
torch.unsqueeze: lambda input, dim, out=None: -1,
torch.var: lambda input: -1,
torch.var_mean: lambda input: -1,
torch.where: lambda condition, x, y: -1,
torch.zeros_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
}
def _get_overloaded_args(relevant_args):
"""Returns a list of arguments on which to call __torch_function__.
Checks arguments in relevant_args for __torch_function__ implementations,
storing references to the arguments and their types in overloaded_args and
overloaded_types in order of calling precedence. Only distinct types are
considered. If a type is a subclass of another type it will have higher
precedence, otherwise the precedence order is the same as the order of
arguments in relevant_args, that is, from left-to-right in the argument list.
The precedence-determining algorithm implemented in this function is
described in `NEP-0018`_.
See torch::append_overloaded_arg for the equivalent function in the C++
implementation.
Parameters
----------
relevant_args : iterable of array-like
Iterable of array-like arguments to check for __torch_function__
methods.
Returns
-------
overloaded_types : collection of types
Types of arguments from relevant_args with __torch_function__ methods.
overloaded_args : list
Arguments from relevant_args on which to call __torch_function__
methods, in the order in which they should be called.
.. _NEP-0018:
https://numpy.org/neps/nep-0018-array-function-protocol.html
"""
# Runtime is O(num_arguments * num_unique_types)
overloaded_types = []
overloaded_args = []
for arg in relevant_args:
arg_type = type(arg)
# We only collect arguments if they have a unique type, which ensures
# reasonable performance even with a long list of possibly overloaded
# arguments.
if (arg_type not in overloaded_types and hasattr(arg_type, '__torch_function__')):
# Create lists explicitly for the first type (usually the only one
# done) to avoid setting up the iterator for overloaded_args.
if overloaded_types:
overloaded_types.append(arg_type)
# By default, insert argument at the end, but if it is
# subclass of another argument, insert it before that argument.
# This ensures "subclasses before superclasses".
index = len(overloaded_args)
for i, old_arg in enumerate(overloaded_args):
if issubclass(arg_type, type(old_arg)):
index = i
break
overloaded_args.insert(index, arg)
else:
overloaded_types = [arg_type]
overloaded_args = [arg]
return overloaded_args
def handle_torch_function(
public_api, relevant_args, *args, **kwargs):
"""Implement a function with checks for __torch_function__ overrides.
See torch::autograd::handle_torch_function for the equivalent of this
function in the C++ implementation.
Arguments
---------
public_api : function
Function exposed by the public torch API originally called like
``public_api(*args, **kwargs)`` on which arguments are now being
checked.
relevant_args : iterable
Iterable of arguments to check for __torch_function__ methods.
args : tuple
Arbitrary positional arguments originally passed into ``public_api``.
kwargs : tuple
Arbitrary keyword arguments originally passed into ``public_api``.
Returns
-------
Result from calling `implementation()` or an `__torch_function__`
method, as appropriate.
Raises
------
TypeError : if no implementation is found.
"""
# Check for __torch_function__ methods.
overloaded_args = _get_overloaded_args(relevant_args)
# overloaded_args already have unique types.
types = tuple(map(type, overloaded_args))
# Call overrides
for overloaded_arg in overloaded_args:
# Use `public_api` instead of `implementation` so __torch_function__
# implementations can do equality/identity comparisons.
result = overloaded_arg.__torch_function__(public_api, types, args, kwargs)
if result is not NotImplemented:
return result
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
raise TypeError("no implementation found for '{}' on types that implement "
'__torch_function__: {}'
.format(func_name, list(map(type, overloaded_args))))
def has_torch_function(relevant_args):
"""Check for __torch_function__ implementations in the elements of an iterable
Arguments
---------
relevant_args : iterable
Iterable or aguments to check for __torch_function__ methods.
Returns
-------
True if any of the elements of relevant_args have __torch_function__
implementations, False otherwise.
"""
return any(hasattr(a, '__torch_function__') for a in relevant_args)
def get_overridable_functions():
"""List functions that are overridable via __torch_function__
Returns
-------
A dictionary that maps namespaces that contain overridable functions
to functions in that namespace that can be overrided.
"""
overridable_funcs = collections.defaultdict(list)
tested_namespaces = [
(torch, torch.__all__ + dir(torch._C._VariableFunctions)),
(torch.functional, torch.functional.__all__),
(torch.nn.functional, dir(torch.nn.functional)),
]
for namespace, ns_funcs in tested_namespaces:
for func_name in ns_funcs:
# ignore private functions or functions that are deleted in torch.__init__
if func_name.startswith('_') or func_name == 'unique_dim':
continue
# ignore in-place operators
if func_name.endswith('_'):
continue
# only consider objects with lowercase names
if not func_name.islower():
continue
func = getattr(namespace, func_name)
# ignore re-exported modules
if isinstance(func, types.ModuleType):
continue
# ignore __future__ imports
if isinstance(func, __future__._Feature):
continue
# cannot be overriden by __torch_function__
if func in get_ignored_functions():
msg = ("{}.{} is in the tuple returned by torch._overrides.get_ignored_functions "
"but still has an explicit override")
assert func not in get_testing_overrides(), msg.format(namespace, func.__name__)
continue
overridable_funcs[namespace].append(func)
return overridable_funcs