-
Notifications
You must be signed in to change notification settings - Fork 6
/
FlowAnalysis.py
661 lines (527 loc) · 29.4 KB
/
FlowAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import numpy as np
import FFTHelperFuncs
from mpi4py_fft import newDistArray
import time
import pickle
import sys
import h5py
import os
from scipy.stats import binned_statistic
from math import ceil
from MPIderivHelperFuncs import MPIderiv2, MPIXdotGradY, MPIdivX, MPIdivXY, MPIgradX, MPIrotX
class FlowAnalysis:
def __init__(self, MPI, args, fields):
self.MPI = MPI
self.comm = MPI.COMM_WORLD
self.rank = self.comm.Get_rank()
self.size = self.comm.Get_size()
self.res = args['res']
self.comm.Barrier()
time_start = MPI.Wtime()
if args['extrema_file'] is not None:
try:
self.global_min_max = pickle.load(open(args['extrema_file'], 'rb'))
if self.rank == 0:
print("Successfully loaded global extrema dict: %s" %
self.global_min_maxFile)
except FileNotFoundError:
raise SystemExit('Extrema file not found: ', args['extrema_file'])
else:
self.global_min_max = {}
self.rho = fields['rho']
self.U = fields['U']
self.B = fields['B']
self.Acc = fields['Acc']
self.P = fields['P']
self.eos = args['eos']
self.gamma = args['gamma']
self.has_b_fields = args['b']
self.kernels= args['kernels']
if self.rank == 0:
self.outfile_path = args['outfile']
# maximum integer wavenumber
k_max_int = ceil(self.res*0.5*np.sqrt(3.))
self.k_bins = np.linspace(0.5,k_max_int + 0.5,k_max_int+1)
# if max k does not fall in last bin, remove last bin
if self.res*0.5*np.sqrt(3.) < self.k_bins[-2]:
self.k_bins = self.k_bins[:-1]
self.FFT = FFTHelperFuncs.FFT
self.localK = FFTHelperFuncs.local_wavenumbermesh
self.localKmag = np.linalg.norm(self.localK,axis=0)
self.localKunit = np.copy(self.localK)
# fixing division by 0 for harmonic part
if self.rank == 0:
if self.localKmag[0,0,0] == 0.:
self.localKmag[0,0,0] = 1.
else:
raise SystemExit("[0] kmag not zero where it's supposed to be")
else:
if (self.localKmag == 0.).any():
raise SystemExit("[%d] kmag not zero where it's supposed to be" % self.rank)
self.localKunit /= self.localKmag
if self.rank == 0:
self.localKmag[0,0,0] = 0.
def calculate_filtering_spectrum(self, kernel):
"""
following Sadek and Aluie (2018) for calculating kinetic energy density filtering spectrum spectrum of kinetic energy
kernel - one of the following kernel types: Box, Gauss, Sharp
"""
# set up array of filters widths
delta_x = 1/self.res
m = np.arange(self.res/2 - 1, 0, -1) # array of integer number of grid cells (see Sadek and Aluie eqn. 31)
k_lm = lm = np.zeros(int(self.res/2)-1)
lm = np.array(2*m*delta_x) # array of length scales (see Sadek and Aluie eqn. 31)
k_lm = 1/lm # array of wavenumbers (see Sadek and Aluie eqn. 32)
momentum = self.rho * self.U
epsilon = np.zeros(len(k_lm))
N = self.res * self.res * self.res
for i, k in enumerate(k_lm):
# set up for calculating cumulative spectrum (epsilon) for each filter length scale
energy = newDistArray(self.FFT,False,rank=1)
FT_momentum = newDistArray(self.FFT,rank=1)
momentum_filtered = newDistArray(self.FFT,False,rank=1)
FT_rho = newDistArray(self.FFT,rank=0)
rho_filtered = newDistArray(self.FFT,False,rank=0)
# calculate the cumulative spectrum (epsilon) for each filter length scale
# (see equations 27 and 6 of Sadek and Aluie)
FT_rho = self.FFT.forward(self.rho, FT_rho)
for j in range(3):
FT_momentum[j] = self.FFT.forward(momentum[j], FT_momentum[j])
filter_width = self.res/(2*k)
FT_G = self.Kernel(filter_width, kernel) # calculate convolution kernel
# calculate filtered values of momentum and density
rho_filtered = (self.FFT.backward(FT_G * FT_rho, rho_filtered)).real
for j in range(3):
momentum_filtered[j] = (self.FFT.backward(FT_G * FT_momentum[j], momentum_filtered[j])).real
# compute the average of momentum^2 / density
filtered_kin_energy = 0.5 * np.sum(np.abs(momentum_filtered**2) / np.abs(rho_filtered), axis=0)
total_kin_energy = (self.comm.allreduce(np.sum(filtered_kin_energy)))
# average energy
epsilon[i] = total_kin_energy / N
# calculate the energy spectrum for each filter length scale (see equation 33 of Sadek and Aluie)
KinEnergy = np.zeros(len(k_lm)-1)
for i in range(len(k_lm) - 1):
KinEnergy[i] = (epsilon[i+1] - epsilon[i])/(k_lm[i+1] - k_lm[i])
if self.rank == 0:
self.outfile.require_dataset('Filtered_' + kernel + '_KinEnergy/PowSpec/Bins', (1,len(k_lm)-1), dtype='f')[0] = k_lm[1:]
self.outfile.require_dataset('Filtered_' + kernel + '_KinEnergy/PowSpec/Full', (1,len(k_lm)-1), dtype='f')[0] = KinEnergy
self.outfile.require_dataset('Filtered_' + kernel + '_KinEnergy/PowSpec/low_pass_energies', (1,len(k_lm)), dtype='f')[0] = epsilon
def run_analysis(self):
rho = self.rho
U = self.U
B = self.B
Acc = self.Acc
P = self.P
if self.rank == 0:
self.outfile = h5py.File(self.outfile_path, "w")
self.vector_power_spectrum('u',U)
self.vector_power_spectrum('rhoU',np.sqrt(rho)*U)
self.vector_power_spectrum('rhoThirdU',rho**(1./3.)*U)
vec_harm, vec_sol, vec_dil = self.decompose_vector(U)
self.vector_power_spectrum('u_s',vec_sol)
self.vector_power_spectrum('u_c',vec_dil)
self.vector_power_spectrum('rhou_s',np.sqrt(rho)*vec_sol)
self.vector_power_spectrum('rhou_c',np.sqrt(rho)*vec_dil)
del vec_harm, vec_sol, vec_dil
self.get_and_write_statistics_to_file(rho,"rho")
self.get_and_write_statistics_to_file(np.log(rho),"lnrho")
self.scalar_power_spectrum('rho',rho)
self.scalar_power_spectrum('lnrho',np.log(rho))
V2 = np.sum(U**2.,axis=0)
self.get_and_write_statistics_to_file(np.sqrt(V2),"u")
self.get_and_write_statistics_to_file(0.5 * rho * V2,"KinEnDensity")
self.get_and_write_statistics_to_file(0.5 * V2,"KinEnSpecific")
if Acc is not None:
Amag = np.sqrt(np.sum(Acc**2.,axis=0))
self.get_and_write_statistics_to_file(Amag,"a")
self.vector_power_spectrum('a',Acc)
self.scalar_power_spectrum('a_x',Acc[0,:,:,:])
self.scalar_power_spectrum('a_y',Acc[1,:,:,:])
self.scalar_power_spectrum('a_z',Acc[2,:,:,:])
vec_harm, vec_sol, vec_dil = self.decompose_vector(Acc)
self.vector_power_spectrum('a_s',vec_sol)
self.vector_power_spectrum('a_c',vec_dil)
self.get_and_write_statistics_to_file(np.sqrt(np.sum(vec_sol**2.,axis=0)),"a_s_mag")
self.get_and_write_statistics_to_file(np.sqrt(np.sum(vec_dil**2.,axis=0)),"a_c_mag")
del vec_harm, vec_sol, vec_dil
corrUA = self.get_corr_coeff(np.sqrt(V2),Amag)
if self.rank == 0:
self.outfile.require_dataset('U-A/corr', (1,), dtype='f')[0] = corrUA
UHarm, USol, UDil = self.decompose_vector(U)
self.get_and_write_statistics_to_file(
np.sum(Acc*U,axis=0)/(
np.linalg.norm(Acc,axis=0)*np.linalg.norm(U,axis=0)),"Angle_u_a")
self.get_and_write_statistics_to_file(
np.sum(Acc*USol,axis=0)/(
np.linalg.norm(Acc,axis=0)*np.linalg.norm(USol,axis=0)),"Angle_uSol_a")
self.get_and_write_statistics_to_file(
np.sum(Acc*UDil,axis=0)/(
np.linalg.norm(Acc,axis=0)*np.linalg.norm(UDil,axis=0)),"Angle_uDil_a")
DivU = MPIdivX(self.comm,U)
self.get_and_write_statistics_to_file(np.abs(DivU),"AbsDivU")
self.get_and_write_statistics_to_file(np.sqrt(np.sum(MPIrotX(self.comm,U)**2.,axis=0)),"AbsRotU")
if self.eos == 'adiabatic':
self.gamma = self.gamma
if self.rank == 0:
print("Using gamma = %.3f for adiabatic EOS" % self.gamma)
c_s2 = self.gamma * P / rho
Ms2 = V2 / (c_s2)
self.get_and_write_statistics_to_file(np.sqrt(Ms2),"Ms")
self.get_2d_hist('rho-P',rho,P)
self.get_and_write_statistics_to_file(P,"P")
self.get_and_write_statistics_to_file(np.log10(P),"log10P")
T = P / (self.gamma - 1.0) /rho
self.get_and_write_statistics_to_file(T,"T")
self.get_and_write_statistics_to_file(np.log10(T),"log10T")
self.get_2d_hist('rho-T',rho,T)
K = T/rho**(2./3.)
self.get_2d_hist('T-K',T,K)
self.get_2d_hist('rho-K',rho,K)
self.co_spectrum('PD',P,DivU)
self.scalar_power_spectrum('eint',np.sqrt(rho*c_s2))
if self.kernels is not None:
if self.rank == 0:
print("Using the following kernels for the filtering spectrum: ", self.kernels)
for kernel in self.kernels:
if self.rank == 0:
print("on kernel: ", kernel)
self.calculate_filtering_spectrum(kernel)
if not self.has_b_fields:
if self.rank == 0:
self.outfile.close()
return
B2 = np.sum(B**2.,axis=0)
self.get_and_write_statistics_to_file(np.sqrt(B2),"B")
self.get_and_write_statistics_to_file(0.5 * B2,"MagEnDensity")
if self.eos == 'adiabatic':
TotPres = P + B2/2.
corrPBcomp = self.get_corr_coeff(P,np.sqrt(B2)/rho**(2./3.))
self.get_2d_hist('P-B',P,np.sqrt(B2))
self.get_2d_hist('P-MagEnDensity',P,0.5 * B2)
plasmaBeta = 2.* P / B2
elif self.eos == 'isothermal':
if self.rank == 0:
print('Warning: assuming c_s = 1 for isothermal EOS')
TotPres = rho + B2/2.
corrPBcomp = self.get_corr_coeff(rho,np.sqrt(B2)/rho**(2./3.))
plasmaBeta = 2.*rho/B2
else:
raise SystemExit('Unknown EOS', self.eos)
self.get_and_write_statistics_to_file(TotPres,"TotPres")
self.get_and_write_statistics_to_file(plasmaBeta,"plasmabeta")
self.get_and_write_statistics_to_file(np.log10(plasmaBeta),"log10plasmabeta")
if self.rank == 0:
self.outfile.require_dataset('P-Bcomp/corr', (1,), dtype='f')[0] = corrPBcomp
AlfMach2 = V2*rho/B2
AlfMach = np.sqrt(AlfMach2)
self.get_and_write_statistics_to_file(AlfMach,"AlfvenicMach")
self.vector_power_spectrum('B',B)
# this is cheap... and only works for pencil decomp in z axis
# np.sum is required for slabs with width > 1
if rho.shape[-1] != self.res:
raise SystemExit('Calculation of dispersion measures only works for pencils')
# using subcomms here so that the pencil based slices are not getting mixed
DM = FFTHelperFuncs.FFT.subcomm[0].allreduce(np.sum(rho,axis=0))/float(self.res)
RM = FFTHelperFuncs.FFT.subcomm[0].allreduce(np.sum(B[0]*rho,axis=0))/float(self.res)
# using chunks so that each process only contributes it's own chunk of data
# as all processes have the full information after the allreduce
chunkSize = DM.shape[0] // FFTHelperFuncs.FFT.subcomm[0].Get_size()
startIdx = FFTHelperFuncs.FFT.subcomm[0].Get_rank() * chunkSize
endIdx = (FFTHelperFuncs.FFT.subcomm[0].Get_rank() + 1) * chunkSize
self.get_and_write_statistics_to_file(DM[startIdx:endIdx,:],"DM_x")
self.get_and_write_statistics_to_file(np.log(DM[startIdx:endIdx,:]),"lnDM_x")
self.get_and_write_statistics_to_file(RM[startIdx:endIdx,:],"RM_x")
self.get_and_write_statistics_to_file(RM[startIdx:endIdx,:]/DM[startIdx:endIdx,:],"LOSB_x")
# using subcomms here so that the pencil based slices are not getting mixed
DM = FFTHelperFuncs.FFT.subcomm[1].allreduce(np.sum(rho,axis=1))/float(self.res)
RM = FFTHelperFuncs.FFT.subcomm[1].allreduce(np.sum(B[1]*rho,axis=1))/float(self.res)
# using chunks so that each process only contributes it's own chunk of data
# as all processes have the full information after the allreduce
chunkSize = DM.shape[1] // FFTHelperFuncs.FFT.subcomm[1].Get_size()
startIdx = FFTHelperFuncs.FFT.subcomm[1].Get_rank() * chunkSize
endIdx = (FFTHelperFuncs.FFT.subcomm[1].Get_rank() + 1) * chunkSize
self.get_and_write_statistics_to_file(DM[:,startIdx:endIdx],"DM_y")
self.get_and_write_statistics_to_file(np.log(DM[:,startIdx:endIdx]),"lnDM_y")
self.get_and_write_statistics_to_file(RM[:,startIdx:endIdx],"RM_y")
self.get_and_write_statistics_to_file(RM[:,startIdx:endIdx]/DM[:,startIdx:endIdx],"LOSB_y")
DM = np.mean(rho,axis=2)
RM = np.mean(B[2]*rho,axis=2)
self.get_and_write_statistics_to_file(DM,"DM_z")
self.get_and_write_statistics_to_file(np.log(DM),"lnDM_z")
self.get_and_write_statistics_to_file(RM,"RM_z")
self.get_and_write_statistics_to_file(RM/DM,"LOSB_z")
corrRhoB = self.get_corr_coeff(rho,np.sqrt(B2))
if self.rank == 0:
self.outfile.require_dataset('rho-B/corr', (1,), dtype='f')[0] = corrRhoB
if self.eos == 'adiabatic':
rhoToGamma = rho**self.gamma
corrRhoToGammaB = self.get_corr_coeff(rhoToGamma,np.sqrt(B2))
if self.rank == 0:
self.outfile.require_dataset('rhoToGamma-B/corr', (1,), dtype='f')[0] = corrRhoToGammaB
self.get_2d_hist('rhoToGamma-B',rhoToGamma,np.sqrt(B2))
self.get_2d_hist('rhoToGamma-MagEnDensity',rhoToGamma,0.5 * B2)
self.get_2d_hist('rho-B',rho,np.sqrt(B2))
self.get_2d_hist('log10rho-B',np.log10(rho),np.sqrt(B2))
if self.rank == 0:
self.outfile.close()
def Kernel(self,DELTA,KERNEL,factor=None):
"""
This function creates the convolution kernel for use with a particular filtering scale
(see equation 6 of "Extracting the spectrum of a flow by spatial filtering" by Sadek and Aluie (2018))
For an introduction to scale filtering, see chapter 2 of "Large Eddy Simulation for Incompressible Flows" by Pierre Sagaut.
The three classical filters used here are described in section 1.5 of that chapter.
KERNEL - the chosen type of convolution kernel (Box, Sharp, or Gaussian)
DELTA - filter width (in grid cells): filter_width = self.res/(2k) where k is the wavenumber associated with the filter.
factor - (optional) multiplicative factor of the filter width
"""
k = self.localKmag
pi = np.pi
if factor is None:
factor = 1
else:
factor = np.int(factor)
# NOTE: Box Kernel needs to be updated for parallel computing (currently non-functional)
if KERNEL == "Box": # aka top hat filter
sys.exit("Box kernel is currently non-functional")
localKern = np.zeros((self.res,self.res,self.res))
for i in range(-factor*np.int(DELTA)//2,factor*np.int(DELTA)//2+1):
for j in range(-factor*np.int(DELTA)//2,factor*np.int(DELTA)//2+1):
for k in range(-factor*np.int(DELTA)//2,factor*np.int(DELTA)//2+1):
localFac = 1.
if np.abs(i) == factor*np.int(DELTA)//2:
localFac *= 0.5
if np.abs(j) == factor*np.int(DELTA)//2:
localFac *= 0.5
if np.abs(k) == factor*np.int(DELTA)//2:
localFac *= 0.5
localKern[i,j,k] = localFac / float(factor*np.int(DELTA))**3.
return fftn(localKern)
elif KERNEL == "Sharp":
localKern = np.ones_like(k)
localKern[k > np.float(self.res)/(2. * factor * np.float(DELTA))] = 0. # Remove small scales
return localKern
elif KERNEL == "Gauss":
return np.exp(-(pi * factor * DELTA/self.res * k)**2. /6.)
else:
sys.exit("Unknown kernel used")
def normalized_spectrum(self,k,quantity):
""" Calculate normalized power spectra
"""
histSum = binned_statistic(k,quantity,bins=self.k_bins,statistic='sum')[0]
kSum = binned_statistic(k,k,bins=self.k_bins,statistic='sum')[0]
histCount = np.histogram(k,bins=self.k_bins)[0]
totalHistSum = self.comm.reduce(histSum.astype(np.float64))
totalKSum = self.comm.reduce(kSum.astype(np.float64))
totalHistCount = self.comm.reduce(histCount.astype(np.float64))
if self.rank == 0:
if (totalHistCount == 0.).any():
print("totalHistCount is 0. Check desired binning!")
print(self.k_bins)
print(totalHistCount)
sys.exit(1)
# calculate corresponding k to to bin
# this help to overcome statistics for low k bins
centeredK = totalKSum / totalHistCount
### "integrate" over k-shells
# normalized by mean shell surface
valsShell = 4. * np.pi * centeredK**2. * (totalHistSum / totalHistCount)
# normalized by mean shell volume
valsVol = 4. * np.pi / 3.* (self.k_bins[1:]**3. - self.k_bins[:-1]**3.) * (totalHistSum / totalHistCount)
# unnormalized
valsNoNorm = totalHistSum
return [centeredK,valsShell,valsVol,valsNoNorm]
else:
return None
def get_rotation_free_vec_field(self, vec):
"""
returns the rotation free component of a 3D 3 component vector field
based on 2nd order finite central differences by solving
discrete La Place eqn div V = - div (grad phi)
"""
# set up left side in Fourier space
div_vec = MPIdivX(self.comm, vec)
ft_div_vec = newDistArray(self.FFT, rank=0)
ft_div_vec = self.FFT.forward(div_vec, ft_div_vec)
# discrete fourier representation of -div grad based on consecutive
# 2nd order first derivatives
denom = -1/2. * self.res**2. * (np.cos(4.*np.pi*self.localK[0]/self.res) +
np.cos(4.*np.pi*self.localK[1]/self.res) +
np.cos(4.*np.pi*self.localK[2]/self.res) - 3.)
# these are 0 in the nominator anyway, so set this to 1 to avoid
# division by zero
denom[denom == 0.] = 1.
ft_div_vec /= denom
phi = newDistArray(self.FFT, False, rank=0)
phi = self.FFT.backward(ft_div_vec, phi).real
return - MPIgradX(self.comm, phi)
def decompose_vector(self, vec):
""" decomposed input vector into harmonic, rotational and compressive part
"""
N = float(self.comm.allreduce(vec.size))
total = self.comm.allreduce(np.sum(vec,axis=(1,2,3)))
# dividing by N/3 as the FFTs are per dimension, i.e., normal is N^3 but N is 3N^3
harm = total / (N/3)
dil = self.get_rotation_free_vec_field(vec)
sol = vec - harm.reshape((3,1,1,1)) - dil
return harm, sol, dil
def scalar_power_spectrum(self,name,field):
FT_field = newDistArray(self.FFT)
FT_field = self.FFT.forward(field, FT_field)
FT_fieldAbs2 = np.abs(FT_field)**2.
PS_Full = self.normalized_spectrum(self.localKmag.reshape(-1),FT_fieldAbs2.reshape(-1))
if self.rank == 0:
self.outfile.require_dataset(name + '/PowSpec/Bins', (1,len(self.k_bins)), dtype='f')[0] = self.k_bins
self.outfile.require_dataset(name + '/PowSpec/Full', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Full
# e.g. (38) in https://arxiv.org/pdf/1101.0150.pdf
def co_spectrum(self,name,fieldA,fieldB):
FT_fieldA = newDistArray(self.FFT)
FT_fieldA = self.FFT.forward(fieldA, FT_fieldA)
FT_fieldB = newDistArray(self.FFT)
FT_fieldB = self.FFT.forward(fieldB, FT_fieldB)
FT_CoSpec = FT_fieldA * np.conj(FT_fieldB)
PS_Abs = self.normalized_spectrum(self.localKmag.reshape(-1),np.abs(FT_CoSpec).reshape(-1))
PS_Real = self.normalized_spectrum(self.localKmag.reshape(-1),np.real(FT_CoSpec).reshape(-1))
if self.rank == 0:
self.outfile.require_dataset(name + '/CoSpec/Bins', (1,len(self.k_bins)), dtype='f')[0] = self.k_bins
self.outfile.require_dataset(name + '/CoSpec/Abs', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Abs
self.outfile.require_dataset(name + '/CoSpec/Real', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Real
def vector_power_spectrum(self, name, vec):
FT_vec = newDistArray(self.FFT,rank=1)
for i in range(3):
FT_vec[i] = self.FFT.forward(vec[i], FT_vec[i])
FT_vecAbs2 = np.linalg.norm(FT_vec,axis=0)**2.
PS_Full = self.normalized_spectrum(self.localKmag.reshape(-1),FT_vecAbs2.reshape(-1))
totPowFull = self.comm.allreduce(np.sum(FT_vecAbs2))
if self.rank == 0:
self.outfile.require_dataset(name + '/PowSpec/Bins', (1,len(self.k_bins)), dtype='f')[0] = self.k_bins
self.outfile.require_dataset(name + '/PowSpec/Full', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Full
self.outfile.require_dataset(name + '/PowSpec/TotFull', (1,), dtype='f')[0] = totPowFull
# project components
localVecDotKunit = np.sum(FT_vec*self.localKunit,axis = 0)
FT_Dil = localVecDotKunit * self.localKunit
FT_DilAbs2 = np.linalg.norm(FT_Dil,axis=0)**2.
PS_Dil = self.normalized_spectrum(self.localKmag.reshape(-1),FT_DilAbs2.reshape(-1))
FT_Sol = FT_vec - FT_Dil
if self.rank == 0:
# remove harmonic part from solenoidal component
FT_Sol[:,0,0,0] = 0.
FT_SolAbs2 = np.linalg.norm(FT_Sol,axis=0)**2.
PS_Sol = self.normalized_spectrum(self.localKmag.reshape(-1),FT_SolAbs2.reshape(-1))
totPowDil = self.comm.allreduce(np.sum(FT_DilAbs2))
totPowSol = self.comm.allreduce(np.sum(FT_SolAbs2))
totPowHarm = np.linalg.norm(FT_vec[:,0,0,0],axis=0)**2.
if self.rank == 0:
self.outfile.require_dataset(name + '/PowSpec/Bins', (1,len(self.k_bins)), dtype='f')[0] = self.k_bins
self.outfile.require_dataset(name + '/PowSpec/Full', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Full
self.outfile.require_dataset(name + '/PowSpec/Dil', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Dil
self.outfile.require_dataset(name + '/PowSpec/Sol', (4,len(self.k_bins)-1), dtype='f')[:,:] = PS_Sol
self.outfile.require_dataset(name + '/PowSpec/TotSol', (1,), dtype='f')[0] = totPowSol
self.outfile.require_dataset(name + '/PowSpec/TotDil', (1,), dtype='f')[0] = totPowDil
self.outfile.require_dataset(name + '/PowSpec/TotHarm', (1,), dtype='f')[0] = totPowHarm
def get_and_write_statistics_to_file(self,field,name,bounds=None):
"""
field - 3d scalar field to get statistics from
name - human readable name of the field
bounds - tuple, lower and upper bound for histogram, if None then min/max
"""
N = float(self.comm.allreduce(field.size))
total = self.comm.allreduce(np.sum(field))
mean = total / N
totalSqrd = self.comm.allreduce(np.sum(field**2.))
rms = np.sqrt(totalSqrd / N)
var = self.comm.allreduce(np.sum((field - mean)**2.)) / (N - 1.)
stddev = np.sqrt(var)
skew = self.comm.allreduce(np.sum((field - mean)**3. / stddev**3.)) / N
kurt = self.comm.allreduce(np.sum((field - mean)**4. / stddev**4.)) / N - 3.
globMin = self.comm.allreduce(np.min(field),op=self.MPI.MIN)
globMax = self.comm.allreduce(np.max(field),op=self.MPI.MAX)
globAbsMin = self.comm.allreduce(np.min(np.abs(field)),op=self.MPI.MIN)
globAbsMax = self.comm.allreduce(np.max(np.abs(field)),op=self.MPI.MAX)
if self.rank == 0:
self.outfile.require_dataset(name + '/moments/mean', (1,), dtype='f')[0] = mean
self.outfile.require_dataset(name + '/moments/rms', (1,), dtype='f')[0] = rms
self.outfile.require_dataset(name + '/moments/var', (1,), dtype='f')[0] = var
self.outfile.require_dataset(name + '/moments/stddev', (1,), dtype='f')[0] = stddev
self.outfile.require_dataset(name + '/moments/skew', (1,), dtype='f')[0] = skew
self.outfile.require_dataset(name + '/moments/kurt', (1,), dtype='f')[0] = kurt
self.outfile.require_dataset(name + '/moments/min', (1,), dtype='f')[0] = globMin
self.outfile.require_dataset(name + '/moments/max', (1,), dtype='f')[0] = globMax
self.outfile.require_dataset(name + '/moments/absmin', (1,), dtype='f')[0] = globAbsMin
self.outfile.require_dataset(name + '/moments/absmax', (1,), dtype='f')[0] = globAbsMax
if bounds is None:
bounds = [globMin,globMax]
HistBins = "Snap"
else:
HistBins = "Sim"
Bins = np.linspace(bounds[0],bounds[1],129)
hist = np.histogram(field.reshape(-1),bins=Bins)[0]
totalHist = self.comm.allreduce(hist)
if self.rank == 0:
tmp = self.outfile.require_dataset(name + '/hist/' + HistBins + 'MinMax', (2,129), dtype='f')
tmp[0] = Bins
tmp[1,:-1] = totalHist.astype(float)
if name in self.global_min_max.keys():
Bins = np.linspace(self.global_min_max[name][0],self.global_min_max[name][1],129)
hist = np.histogram(field.reshape(-1),bins=Bins)[0]
totalHist = self.comm.allreduce(hist)
HistBins = 'globalMinMax'
if self.rank == 0:
tmp = self.outfile.require_dataset(name + '/hist/' + HistBins + 'MinMax', (2,129), dtype='f')
tmp[0] = Bins
tmp[1,:-1] = totalHist.astype(float)
def get_corr_coeff(self,X,Y):
N = float(self.comm.allreduce(X.size))
meanX = self.comm.allreduce(np.sum(X)) / N
meanY = self.comm.allreduce(np.sum(Y)) / N
stdX = np.sqrt(self.comm.allreduce(np.sum((X - meanX)**2.)))
stdY = np.sqrt(self.comm.allreduce(np.sum((Y - meanY)**2.)))
cov = self.comm.allreduce(np.sum( (X - meanX)*(Y - meanY)))
return cov / (stdX*stdY)
def get_2d_hist(self,name,X,Y,bounds = None):
if bounds is None:
globXMin = self.comm.allreduce(np.min(X),op=self.MPI.MIN)
globXMax = self.comm.allreduce(np.max(X),op=self.MPI.MAX)
globYMin = self.comm.allreduce(np.min(Y),op=self.MPI.MIN)
globYMax = self.comm.allreduce(np.max(Y),op=self.MPI.MAX)
bounds = [[globXMin,globXMax],[globYMin,globYMax]]
HistBins = "Snap"
else:
HistBins = "Sim"
XBins = np.linspace(bounds[0][0],bounds[0][1],129)
YBins = np.linspace(bounds[1][0],bounds[1][1],129)
hist = np.histogram2d(X.reshape(-1),Y.reshape(-1),bins=[XBins,YBins])[0]
totalHist = self.comm.allreduce(hist)
if self.rank == 0:
tmp = self.outfile.require_dataset(name + '/hist/' + HistBins + 'MinMax/edges', (2,129), dtype='f')
tmp[0] = XBins
tmp[1] = YBins
tmp = self.outfile.require_dataset(name + '/hist/' + HistBins + 'MinMax/counts', (128,128), dtype='f')
tmp[:,:] = totalHist.astype(float)
Xname, Yname = name.split('-')
if Xname in self.global_min_max.keys() and Yname in self.global_min_max.keys():
XBins = np.linspace(self.global_min_max[Xname][0],self.global_min_max[Xname][1],129)
YBins = np.linspace(self.global_min_max[Yname][0],self.global_min_max[Yname][1],129)
hist = np.histogram2d(X.reshape(-1),Y.reshape(-1),bins=[XBins,YBins])[0]
totalHist = self.comm.allreduce(hist)
HistBins = 'globalMinMax'
if self.rank == 0:
tmp = self.outfile.require_dataset(name + '/hist/' + HistBins + 'MinMax/edges', (2,129), dtype='f')
tmp[0] = XBins
tmp[1] = YBins
tmp = self.outfile.require_dataset(name + '/hist/' + HistBins + 'MinMax/counts', (128,128), dtype='f')
tmp[:,:] = totalHist.astype(float)
def run_test(self):
""" simple tests (to be expanded and separated)
"""
# using velocity field for no reason, but it's probably most likely to be avail
vec = self.U
# TESTING VECTOR DECOMPOSITION
vec_harm, vec_sol, vec_dil = self.decompose_vector(vec)
np.testing.assert_allclose(vec,
vec_harm.reshape((3,1,1,1)) + vec_sol + vec_dil,
err_msg="Mismatch bw/ decomposed and original vector.")
msg = "solenoidal part is not divergence free"
assert np.sum(np.abs(MPIdivX(self.comm, vec_sol)))/vec_sol.size/3 < 1e-13, msg
msg = "compressive part is not rotation free"
assert np.sum(np.linalg.norm(MPIrotX(self.comm, vec_dil),axis=0))/vec_dil.size/3 < 1e-13, msg
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 ai