forked from gooofy/zamia-speech
-
Notifications
You must be signed in to change notification settings - Fork 2
/
speech_deepspeech_export.py
executable file
·156 lines (111 loc) · 3.97 KB
/
speech_deepspeech_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2016, 2017, 2018 Guenter Bartsch
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# export speech training data for mozilla deepspeech
#
import os
import sys
import logging
import traceback
import codecs
from optparse import OptionParser
from StringIO import StringIO
from nltools import misc
from nltools.tokenizer import tokenize
from speech_transcripts import Transcripts
WORKDIR = 'data/dst/speech/%s/deepspeech'
PROMPT_AUDIO_FACTOR = 1000
#
# init
#
misc.init_app ('speech_deepspeech_export')
config = misc.load_config ('.speechrc')
#
# commandline parsing
#
parser = OptionParser("usage: %prog [options] )")
parser.add_option ("-d", "--debug", dest="debug", type='int', default=0,
help="limit number of transcripts (debug purposes only), default: 0 (unlimited)")
parser.add_option ("-l", "--lang", dest="lang", type = "str", default='de',
help="language (default: de)")
parser.add_option ("-v", "--verbose", action="store_true", dest="verbose",
help="enable verbose logging")
(options, args) = parser.parse_args()
if options.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
#
# config
#
work_dir = WORKDIR %options.lang
wav16_dir = config.get("speech", "wav16_dir_%s" % options.lang)
#
# load transcripts
#
logging.info ( "loading transcripts...")
transcripts = Transcripts(corpus_name=options.lang)
logging.info ( "loading transcripts...done. %d transcripts." % len(transcripts))
logging.info ("splitting transcripts...")
ts_all, ts_train, ts_test = transcripts.split()
logging.info ("splitting transcripts done, %d train, %d test." % (len(ts_train), len(ts_test)))
#
# create work_dir
#
misc.mkdirs('%s' % work_dir)
# export csv files
csv_train_fn = '%s/train.csv' % work_dir
csv_dev_fn = '%s/dev.csv' % work_dir
csv_test_fn = '%s/test.csv' % work_dir
alphabet = set()
vocabulary = []
def export_ds(ds, csv_fn):
global alphabet
cnt = 0
with codecs.open(csv_fn, 'w', 'utf8') as csv_f:
csv_f.write('wav_filename,wav_filesize,transcript\n')
for cfn in ds:
ts = ds[cfn]
wavfn = '%s/%s.wav' % (wav16_dir, cfn)
wavlen = os.path.getsize(wavfn)
prompt = ts['ts']
if (len(prompt)*PROMPT_AUDIO_FACTOR) > wavlen:
logging.warn('Skipping %s (wav (%d bytes) too short for prompt (%d chars)' % (cfn, wavlen, len(prompt)))
continue
for c in prompt:
alphabet.add(c)
csv_f.write('%s,%d,%s\n' % (wavfn, wavlen, prompt))
vocabulary.append(prompt)
cnt += 1
logging.info ("%s %d lines written." % (csv_fn, cnt) )
export_ds(ts_train, csv_train_fn)
export_ds(ts_test, csv_test_fn)
export_ds(ts_test, csv_dev_fn)
# export alphabet
alphabet_fn = '%s/alphabet.txt' % work_dir
with codecs.open(alphabet_fn, 'w', 'utf8') as alphabet_f:
for c in sorted(alphabet):
alphabet_f.write('%s\n' % c)
logging.info ("%s written." % alphabet_fn)
# export vocabulary
vocabulary_fn = '%s/vocabulary.txt' % work_dir
with codecs.open(vocabulary_fn, 'w', 'utf8') as vocabulary_f:
for l in vocabulary:
vocabulary_f.write('%s\n' % l)
logging.info ("%s written." % vocabulary_fn)