-
Notifications
You must be signed in to change notification settings - Fork 30
/
functions.lisp
807 lines (766 loc) · 49.8 KB
/
functions.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
;;; -*- Mode:Lisp; Syntax:ANSI-Common-Lisp; Coding:utf-8; Package:April -*-
;;;; functions.lisp
(in-package #:april)
"This file contains the functions in April's 'standard library' that aren't provided by the aplesque package, mostly functions that are specific to the APL language and not generally applicable to array processing, as well as April-specific wrappers for aplesque functions."
(defun binary-not (bit)
"Flip a binary value. Used to implement [~ not]."
(case bit (0 1) (1 0) (t (error "Domain error: arguments to ~~ must be 1 or 0."))))
(defun apl-random-process (item index-origin generator)
"Core of (apl-random), randomizing an individual integer or float."
(if (integerp item)
(if (zerop item) (if (eq :system generator)
(+ double-float-epsilon (random (- 1.0d0 (* 2 double-float-epsilon))))
(random-state:random-float generator double-float-epsilon
(- 1.0d0 double-float-epsilon)))
(if (eq :system generator) (+ index-origin (random item))
(random-state:random-int generator index-origin (1- (+ item index-origin)))))
(if (floatp item)
(if (eq :system generator) (random item)
(random-state:random-float
generator double-float-epsilon (- (coerce item 'double-float)
double-float-epsilon)))
(error "The right argument to ? can only contain non-negative integers or floats."))))
(defun apl-random (index-origin rngs)
"Randomize an array or scalar value. This must run synchronously over arrays without threading so that the same seed will produce the same output. Used to implement [? random]."
(lambda (omega)
(let* ((gen-name (getf (rest rngs) :rng))
(generator (or (getf (rest rngs) gen-name)
(setf (getf (rest rngs) gen-name)
(if (eq :system gen-name)
:system (random-state:make-generator gen-name))))))
(if (not (arrayp omega))
(apl-random-process omega index-origin generator)
(if (is-integer-array omega)
(let* ((zeroes-present nil)
(nonzeroes-present nil))
;; TODO: this is fast if a zero is encountered soon, but slow if not because
;; it does not run in parallel, write loops running in parallel
(loop :for i :below (size omega) :while (or (not zeroes-present)
(not nonzeroes-present))
:do (if (zerop (row-major-aref omega i)) (setq zeroes-present t)
(setq nonzeroes-present t)))
(let ((output (make-array (dims omega)
:element-type (if (not nonzeroes-present)
'double-float
(if (and zeroes-present nonzeroes-present)
t (element-type omega))))))
(dotimes (i (size omega))
(setf (row-major-aref output i)
(apl-random-process (row-major-aref omega i) index-origin generator)))
output))
(let ((output (make-array (dims omega) :element-type (element-type omega))))
(dotimes (i (size omega))
(setf (row-major-aref output i)
(apl-random-process (row-major-aref omega i) index-origin generator)))
output))))))
(defun apl-divide (method)
"Generate a division function according to the [⎕DIV division method] in use."
(lambda (omega &optional alpha)
(if (and alpha (zerop omega) (zerop alpha))
(if (zerop method) 1 0)
(if (and (< 0 method) (zerop omega))
0 (if alpha (/ alpha omega)
(/ omega))))))
(defun sb-rationalize (x)
"This is a port of SBCL's (rationalize) function. It is needed for use in ABCL and ECL, whose (rationalize) implementations appear to simply pass through to (rational)."
(if (realp x)
(if (or (typep x 'single-float) (typep x 'double-float) (typep x 'long-float))
(multiple-value-bind (frac expo sign)
(integer-decode-float x)
(cond ((or (zerop frac) (>= expo 0))
(if (minusp sign)
(- (ash frac expo))
(ash frac expo)))
(t (let ((a (/ (- (* 2 frac) 1) (ash 1 (- 1 expo))))
(b (/ (+ (* 2 frac) 1) (ash 1 (- 1 expo))))
(p0 0)
(q0 1)
(p1 1)
(q1 0))
;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e),
;; so build the fraction up immediately, without having to do
;; a gcd.
(do ((c (ceiling a) (ceiling a)))
((< c b)
(let ((top (+ (* c p1) p0))
(bot (+ (* c q1) q0)))
(/ (if (minusp sign)
(- top)
top)
bot)))
(let* ((k (- c 1))
(p2 (+ (* k p1) p0))
(q2 (+ (* k q1) q0)))
(psetf a (/ (- b k))
b (/ (- a k)))
(setf p0 p1
q0 q1
p1 p2
q1 q2)))))))
(when (rationalp x) x))))
(defun cmucl-complex-acos (z)
"This (acos) implementation is used for ECL, whose stock (acos) is different from other CLs."
(declare (number z))
(let ((sqrt-1+z (sqrt (+ 1 z)))
(sqrt-1-z (sqrt (- 1 z))))
(complex (* 2 (atan (realpart sqrt-1-z) (realpart sqrt-1+z)))
(asinh (imagpart (* (conjugate sqrt-1+z)
sqrt-1-z))))))
(defun apl-exp (omega)
"Power of e function that will always output a double-precision float as per APL standard."
(exp (if (typep omega 'integer)
(coerce omega 'double-float) omega)))
(defun apl-expt (omega alpha)
"Exponent function that will always output a double-precision float except if both arguments are integers, as per APL standard."
;; in the case of one non-natural argument, both must be coerced to floats to avoid trouble in ABCL
(expt (if (and (typep omega 'integer) (not (typep alpha 'integer)))
(coerce omega 'double-float) omega)
(if (and (typep alpha 'integer) (not (typep omega 'integer)))
(coerce alpha 'double-float) alpha)))
(defun apl-log (omega &optional alpha)
"Logarithm function that will always output a double-precision float as per APL standard."
;; like expt, both args must be coerced to doubles to avoid a problem in ABCL
(if alpha (log (if (typep omega 'integer)
(coerce omega 'double-float) omega)
(if (typep alpha 'integer)
(coerce alpha 'double-float) alpha))
(log (if (typep omega 'integer)
(coerce omega 'double-float) omega))))
(defun complex-floor (number comparison-tolerance)
"Find the floor of a complex number using Eugene McDonnell's algorithm."
(let* ((rfloor (floor (realpart number)))
(ifloor (floor (imagpart number)))
(rpart (- (realpart number) rfloor))
(ipart (- (+ (imagpart number)
(* comparison-tolerance (abs (imagpart number))))
ifloor)))
(if (> 1 (+ rpart ipart)) (complex rfloor ifloor)
(if (< rpart ipart) (complex rfloor (1+ ifloor))
(1+ (complex rfloor ifloor))))))
(defun apl-floor (comparison-tolerance)
"Find a number's floor using the complex floor algorithm if needed."
(lambda (omega)
(if (complexp omega) (complex-floor omega comparison-tolerance)
(floor omega))))
(defun apl-ceiling (comparison-tolerance)
"Find a number's ceiling deriving from the complex floor algorithm if needed."
(lambda (omega)
(if (complexp omega) (- (complex-floor (- omega) comparison-tolerance))
(ceiling omega))))
(defun apl-residue (comparison-tolerance)
"Implementation of residue extended to complex numbers based on the complex-floor function."
(lambda (omega alpha)
(if (or (complexp omega) (complexp alpha))
(let ((ainput (complex (if (zerop (realpart alpha))
1 (realpart alpha))
(if (zerop (imagpart alpha))
1 (imagpart alpha)))))
(- omega (* ainput (complex-floor (/ omega ainput) comparison-tolerance))))
(if (zerop alpha)
omega (mod omega alpha)))))
(defun apl-xcy (function)
"Return a function to find the greatest common denominator or least common multiple of fractional as well as whole numbers. If one or both arguments are floats, the result is coerced to a double float."
(lambda (omega alpha)
(if (and (integerp omega) (integerp alpha))
(funcall function omega alpha)
(let* ((float-input)
(omega (if (not (floatp omega))
omega (setf float-input #+(or abcl ecl clasp) (sb-rationalize omega)
#+(not (or abcl ecl clasp)) (rationalize omega))))
(alpha (if (not (floatp alpha))
alpha (setf float-input #+(or abcl ecl clasp) (sb-rationalize alpha)
#+(not (or abcl ecl clasp)) (rationalize alpha)))))
(funcall (if float-input (lambda (number)
(if (not (typep number 'ratio))
number (coerce number 'double-float)))
#'identity)
(let ((d-product (* (denominator omega) (denominator alpha))))
(/ (funcall function (* d-product omega) (* d-product alpha))
d-product)))))))
(defun apl-gcd (comparison-tolerance)
"Implementation of greatest common denominator extended to complex numbers based on the complex-floor function."
(lambda (omega alpha)
(if (not (or (complexp omega) (complexp alpha)))
(funcall (apl-xcy #'gcd) omega alpha)
(if (zerop (funcall (apl-residue comparison-tolerance)
omega alpha))
alpha (if (or (not (integerp (realpart omega)))
(not (integerp (realpart alpha))))
(let* ((rlromega #+(or abcl ecl clasp) (sb-rationalize (realpart omega))
#+(not (or abcl ecl clasp)) (rationalize (realpart omega)))
(rliomega #+(or abcl ecl clasp) (sb-rationalize (imagpart omega))
#+(not (or abcl ecl clasp)) (rationalize (imagpart omega)))
(oden (lcm (denominator rlromega)
(denominator rliomega)))
(rlralpha #+(or abcl ecl clasp) (sb-rationalize (realpart alpha))
#+(not (or abcl ecl clasp)) (rationalize (realpart alpha)))
(rlialpha #+(or abcl ecl clasp) (sb-rationalize (imagpart alpha))
#+(not (or abcl ecl clasp)) (rationalize (imagpart alpha)))
(aden (lcm (denominator rlralpha)
(denominator rlialpha))))
(* 1.0d0 (/ (funcall (apl-gcd comparison-tolerance)
(complex (* (numerator rlromega)
(/ oden (denominator rlromega)))
(* (numerator rliomega)
(/ oden (denominator rliomega))))
(complex (* (numerator rlralpha)
(/ aden (denominator rlralpha)))
(* (numerator rlialpha)
(/ aden (denominator rlialpha)))))
(lcm oden aden))))
(funcall (apl-gcd comparison-tolerance)
alpha (let ((residue (funcall (apl-residue comparison-tolerance)
omega alpha)))
(if (< (- comparison-tolerance)
(realpart residue)
comparison-tolerance)
residue (imagpart residue)))))))))
(defun apl-lcm (comparison-tolerance)
"Implementation of lease common multiple extended to complex numbers based on the complex-floor function."
(lambda (omega alpha)
(if (or (complexp omega) (complexp alpha))
(* alpha (/ omega (funcall (apl-gcd comparison-tolerance) omega alpha)))
(funcall (apl-xcy #'lcm) omega alpha))))
(defun without (omega alpha)
"Remove elements in omega from alpha. Used to implement dyadic [~ without]."
(flet ((compare (o a)
(funcall (if (and (characterp a) (characterp o))
#'char= (if (and (numberp a) (numberp o))
#'= (lambda (a o) (declare (ignore a o)))))
o a)))
(if (not (arrayp alpha))
(setq alpha (vector alpha))
(unless (vectorp alpha)
(error "The left argument to [~ without] must be a vector.")))
(let ((included)
(omega-vector (if (or (vectorp omega) (not (arrayp omega)))
(disclose omega)
(make-array (array-total-size omega)
:displaced-to omega :element-type (element-type omega)))))
(loop :for element :across alpha
:do (let ((include t))
(if (vectorp omega-vector)
(loop :for ex :across omega-vector
:do (when (compare ex element) (setq include nil)))
(when (compare omega-vector element) (setq include nil)))
(when include (push element included))))
(make-array (list (length included)) :element-type (element-type alpha)
:initial-contents (reverse included)))))
(defun scalar-compare (comparison-tolerance)
"Compare two scalar values as appropriate for APL."
(lambda (omega alpha)
(funcall (if (and (characterp alpha) (characterp omega))
#'char= (if (and (numberp alpha) (numberp omega))
(if (not (or (floatp alpha) (floatp omega)))
#'= (lambda (a o) (> comparison-tolerance (abs (- a o)))))
(lambda (a o) (declare (ignore a o)))))
omega alpha)))
(defun compare-by (symbol comparison-tolerance)
"Generate a comparison function using the [⎕CT comparison tolerance]."
(lambda (omega alpha)
(funcall (if (and (numberp alpha) (numberp omega))
(if (not (or (floatp alpha) (floatp omega)))
(symbol-function symbol)
(lambda (a o)
(case symbol
(< (< comparison-tolerance (- o a)))
(> (< comparison-tolerance (- a o)))
(<= (or (> comparison-tolerance (abs (- a o)))
(< comparison-tolerance (- o a))))
(>= (or (> comparison-tolerance (abs (- a o)))
(< comparison-tolerance (- a o))))))))
omega alpha)))
(defun count-to (index index-origin)
"Implementation of APL's [⍳ index] function."
(let ((int-index (if (integerp index)
index (unless (or (and (not (arrayp index))
(not (varrayp index)))
(< 1 (size-of index)))
(let ((generator (generator-of index)))
(if (not (functionp generator))
generator (funcall generator 0)))))))
(if int-index (make-instance 'vapri-apro-vector :number int-index :origin index-origin)
(make-instance 'vapri-coordinate-identity :shape index :index-origin index-origin))))
(defun at-index (index-origin axes)
"Find the value(s) at the given index or indices in an array. Used to implement [⌷ index]."
(lambda (omega alpha)
(if (and (not (arrayp omega))
(not (varrayp omega)))
(if (and (numberp alpha) (= index-origin alpha))
omega (error "Invalid index."))
(make-virtual
'vader-select
:base omega :index-origin index-origin
:argument (let ((alpha (vrender alpha :not-nested t))
(axis (when axes (if (vectorp (first axes))
;; the inefficient array-to-list is used here in
;; case of nested alpha arguments like (⊂1 2 3)⌷...
(coerce (first axes) 'list)
(when (integerp (first axes))
(list (first axes)))))))
(if axis (let ((cx 0))
(loop :for dim :below (rank-of omega)
:collect (when (member (+ dim index-origin) axis)
(let ((c (if (not (arrayp alpha))
alpha (if (zerop (rank alpha))
(aref alpha)
(aref alpha cx)))))
(incf cx)
c))))
;; pad coordinates with nil elements in the case of an elided reference
(let ((alpha-list (if (arrayp alpha)
(if (zerop (rank alpha))
(list (aref alpha))
(loop :for a :across alpha :collect a))
(list alpha))))
(append alpha-list (loop :for i :below (- (rank-of omega)
(length alpha-list))
:collect nil)))))))))
(defun format-array (print-precision)
"Use (aplesque:array-impress) to print an array and return the resulting character array, with the option of specifying decimal precision. Used to implement monadic and dyadic [⍕ format]."
(lambda (omega &optional alpha)
(let ((omega (vrender omega))
(alpha (vrender alpha)))
(when (and alpha (not (integerp alpha)))
(error (concatenate 'string "The left argument to ⍕ must be an integer specifying"
" the precision at which to print floating-point numbers.")))
(if (characterp omega)
omega (array-impress
omega :collate t
:segment (lambda (number &optional segments)
(count-segments number (if alpha (- alpha) print-precision)
segments))
:format (lambda (number &optional segments rps)
(print-apl-number-string number segments print-precision alpha rps)))))))
(defun format-array-uncollated (print-precision-default)
"Generate a function using (aplesque:array-impress) to print an array in matrix form without collation. Used to implement ⎕FMT."
(lambda (input &optional print-precision)
(let ((input (vrender input))
(print-precision (or (vrender print-precision)
print-precision-default))
(is-not-nested t))
(when (and print-precision (not (integerp print-precision)))
(error "The left argument to ⍕ must be an integer specifying ~a"
"the precision at which to print floating-point numbers."))
;; only right-indent if this is a nested array; this is important for box-drawing functions
(when (arrayp input)
(loop :for x :below (size input) :while is-not-nested
:do (when (arrayp (row-major-aref input x))
(setf is-not-nested nil))))
(funcall (lambda (output)
(if (/= 1 (rank output))
output (array-promote output)))
(array-impress input :unpadded is-not-nested
:segment (lambda (number &optional segments)
(count-segments number print-precision segments))
:format (lambda (number &optional segments rps)
(print-apl-number-string number segments
print-precision print-precision rps)))))))
(defun generate-index-array (array &optional scalar-assigned ext-index)
"Given an array, generate an array of the same shape whose each cell contains its row-major index."
(let* ((index (or ext-index -1))
(is-scalar (zerop (rank array)))
(array (if (not (and is-scalar (not scalar-assigned)))
array (aref array)))
(output (make-array (dims array) :element-type (if (eq t (element-type array))
t (list 'integer 0 (size array))))))
;; TODO: can this be parallelized?
(dotimes (i (size array))
(if (or scalar-assigned (not (arrayp (row-major-aref array i))))
(setf (row-major-aref output i) (incf index))
(multiple-value-bind (out-array out-index)
(generate-index-array (row-major-aref array i) scalar-assigned index)
(setf (row-major-aref output i) out-array
index out-index))))
(values (funcall (if (or scalar-assigned (not is-scalar))
#'identity (lambda (o) (make-array nil :initial-element o)))
output)
(+ index (if ext-index 0 1)))))
(defun invert-assigned-varray (object &optional order)
"Generate the inverted deferred computation object that serves to verify indices in a selection array implementing assignment by selection, like the one expressed by {na←3⍴⊂⍳4 ⋄ (1↑⊃na[1])←⍵ ⋄ na} 99."
(if (and (varrayp object)
(not (typep object 'varray::varray-primal)))
(invert-assigned-varray (typecase object (vacomp-each (varray::vacmp-omega object))
(t (varray::vader-base object)))
(typecase object (vader-identity order)
;; omit identity objects, this is for selective
;; assignment cases like ⍺←⊢ ⋄ (⍺ ⍺⍺ X)←Y
(vader-select (append order (list object)))
(vader-pick (append order (list object)))
;; pick and select objects are shifted to the end of the list
(t (cons object order))))
(let ((output) (ivec))
(dolist (o order)
(typecase o (vacomp-each (setf (varray::vacmp-omega o) (or output object)))
(vader-select (setf (varray::vasel-selector o) (or output object)))
;; in the case of an enlist object, generate the index array and pass it
;; back via the second value, needed for cases like
;; 'a' {names←'Kent' 'Alan' 'Ryan' ⋄ ((⍺=∊names)/∊names)←⍵ ⋄ names} '*'
(t (setf (varray::vader-base o)
(or output (if (not (typep o 'vader-enlist))
object (setf ivec (generate-index-array object)))))))
(setf output o))
(values (or output object) ivec))))
(defun assign-by-selection (function value omega &key index-origin)
"Assign to elements of an array selected by a function. Used to implement (3↑x)←5 etc."
(multiple-value-bind (base-object ivec) (invert-assigned-varray (funcall function omega))
(typecase base-object
(varray::vader-select
(setf (varray::vasel-assign base-object) value)
base-object)
(varray::vader-pick
(setf (varray::vapick-assign base-object) value
(varray::vapick-selector base-object)
;; assign the selector if the omega is a virtual array, this excludes
;; cases like x←⍳4 ⋄ (⊃x)←2 2⍴⍳4 ⋄ x
;; TODO: normalize this check for full lazy operation
(when (typep (varray::vader-base base-object) 'varray::varray)
(varray::vader-base base-object))
(varray::vader-base base-object) omega)
base-object)
;; In the case of an index vector returned as the second value from invert-assigned-varray,
;; assignment is being done according to processing of an enlist of the input array, thus
;; selection is done using a vector of matching enlisted indices. Thus a vector of the indices
;; and a nested index array must be passed to the select object indexer for use indexing.
(t (make-instance 'vader-select :base omega :index-origin index-origin :assign value
:selector (if ivec (list :ebase ivec :eindices base-object)
(funcall function omega)))))))
(defun operate-each (operand)
(op-compose 'vacomp-each :left operand))
(defun operate-commuting (operand)
"Generate a function with reversed or mirrored arguments. Used to implement [⍨ commute]."
(lambda (omega &optional alpha environment)
(declare (ignore environment))
(if (not (functionp operand))
operand (if (eq :get-metadata omega)
(list :inverse (lambda (omega &optional alpha)
(if (not alpha)
(let* ((operand-meta (funcall operand :get-metadata nil))
(inverse-commuted (getf operand-meta :inverse-commuted)))
(if inverse-commuted (funcall inverse-commuted omega)
(error "This commuted function cannot be inverted."))))))
(funcall operand (or alpha omega) omega)))))
(defun operate-grouping (function index-origin)
"Generate a function applying a function to items grouped by a criterion. Used to implement [⌸ key]."
(lambda (omega &optional alpha environment)
(declare (ignore environment))
(let* ((keys (vrender (or alpha omega)))
(keys-dims (varray::shape-of keys))
(increment (reduce #'* (rest keys-dims)))
(sub-shape (when (< 1 increment) (list increment)))
(indices-of (lambda (item vector)
(let ((collection))
(loop :for i :below (first (varray::shape-of vector))
:do (let ((section (if (= 1 increment) (aref vector i)
(make-instance 'vader-subarray-displaced
:base vector :index i
:shape sub-shape))))
(when (varray-compare item section)
(push (+ index-origin i) collection))))
collection)))
(key-table (make-hash-table :test #'equalp))
(elisions (loop :for i :below (1- (varray::rank-of omega)) :collect nil))
(key-list)
(key-indexer (varray::generator-of keys)))
(dotimes (i (first keys-dims))
(let ((item (if (= 1 increment) (funcall key-indexer i)
(make-instance 'vader-subarray-displaced
:base keys :index i :shape sub-shape))))
(when (loop :for key :in key-list :never (varray-compare item key))
(push item key-list))
(push i (gethash item key-table))))
(let ((item-sets (loop :for key :in (reverse key-list)
:collect (funcall function
(if alpha
(make-instance
'vader-select :base omega
:argument (cons (apply #'vector
(reverse
(gethash key key-table)))
elisions))
(let ((items (funcall indices-of key keys)))
(make-array (length items)
:initial-contents (reverse items))))
key))))
(make-instance 'vader-mix :base (apply #'vector item-sets) :nested t :axis 1)))))
(defun operate-producing-outer (operand)
"Generate a function producing an outer product. Used to implement [∘. outer product]."
(lambda (omega alpha &optional environment blank)
(declare (ignore environment blank))
(if (eq :get-metadata omega)
(list :inverse-right (lambda (omega alpha)
(make-instance 'vacomp-produce
:right (getf (funcall operand :get-metadata nil) :inverse)
:left :outer :inverse t :omega omega :alpha alpha))
:inverse (lambda (omega alpha)
(make-instance 'vacomp-produce
:right (getf (funcall operand :get-metadata nil) :inverse)
:left :outer :inverse :left :omega alpha :alpha omega)))
(make-instance 'vacomp-produce :right operand :left :outer :omega omega :alpha alpha))))
(defun operate-beside (right left)
"Generate a function by linking together two functions or a function curried with an argument. Used to implement [∘ compose]."
(let ((temp)
(fn-right (when (functionp right) right))
(fn-left (when (functionp left) left)))
(lambda (omega &optional alpha environment blank)
(declare (ignore environment blank)) ;; blank allows the case of :get-metadata nil arguments
(if (eq :get-metadata omega)
(list :inverse (lambda (omega &optional alpha)
(when (and fn-right fn-left)
(setq temp fn-right
fn-right fn-left
fn-left temp))
(let* ((meta-right (when fn-right (apply fn-right :get-metadata
(when (or alpha (not fn-left))
(list nil)))))
(meta-left (when fn-left (apply fn-left :get-metadata
(when (or alpha (not fn-right))
(list nil)))))
(fn-right (when fn-right (or (getf meta-right
(if (or alpha (not fn-left))
:inverse :inverse-right))
(getf meta-right :inverse))))
(fn-left (when fn-left
(if (and alpha fn-right)
fn-left (or (getf meta-left :inverse-right)
(getf meta-left :inverse))))))
(if (and fn-right fn-left)
(let ((processed (if alpha (funcall fn-right omega alpha)
(funcall fn-right omega))))
(funcall fn-left processed))
(if alpha (error "This function does not take a left argument.")
(funcall (or fn-right fn-left)
(if fn-right omega right)
(if fn-left omega left))))))
:operator-type :beside
:right-meta (when fn-right (apply fn-right :get-metadata (when (or alpha (not fn-left))
(list nil))))
:left-meta (when fn-left (apply fn-left :get-metadata (when (or alpha (not fn-right))
(list nil)))))
(if (and fn-right fn-left)
(let ((processed (funcall fn-right omega)))
(if alpha (funcall fn-left processed alpha)
(funcall fn-left processed)))
(if alpha (error "This function does not take a left argument.")
(funcall (or fn-right fn-left)
(if fn-right omega right)
(if fn-left omega left))))))))
(defun operate-before (right-fn left-fn)
"Generate a function by linking together two functions with the left one called first. Used to implement [⍛ reverse compose]."
(lambda (omega &optional alpha)
(if alpha (funcall right-fn omega (funcall left-fn alpha))
(error "A function composed with [⍛ reverse compose] must have a left argument."))))
(defun operate-at-rank (rank function)
"Generate a function applying a function to sub-arrays of the arguments. Used to implement [⍤ rank]."
(lambda (omega &optional alpha environment blank)
(declare (ignore environment blank))
(let* ((rank (disclose-atom (vrender rank)))
(odims (shape-of omega)) (adims (shape-of alpha))
(orank (varray::rank-of omega)) (arank (varray::rank-of alpha))
;; if alpha is nil the monadic metadata will be fetched, otherwise the dyadic data will be
(rank (if (arrayp rank)
(if (= 1 (size rank))
(make-array 3 :initial-element (row-major-aref rank 0))
(if (= 2 (size rank))
(make-array 3 :initial-contents (list (aref rank 1)
(aref rank 0) (aref rank 1)))
(if (= 3 (size rank))
rank (when (or (< 1 (rank rank)) (< 3 (size rank)))
(error "Right operand of [⍤ rank] must be a scalar integer or ~a"
"integer vector no more than 3 elements long.")))))
(if (> 0 rank) ;; handle a negative rank as for ,⍤¯1⊢2 3 4⍴⍳24
(make-array 3 :initial-contents (list (max 0 (+ rank orank))
(max 0 (+ rank (if alpha arank orank)))
(max 0 (+ rank orank))))
(make-array 3 :initial-element rank))))
(ocrank (aref rank 2))
(acrank (aref rank 1))
(omrank (aref rank 0))
(fn-meta (funcall function :get-metadata nil))
(operand-lex-ref (getf fn-meta :lexical-reference)))
(when (or (not (and (integerp ocrank) (or (zerop ocrank) (plusp ocrank))))
(not (and (integerp acrank) (or (zerop acrank) (plusp acrank))))
(not (and (integerp omrank) (or (zerop omrank) (plusp omrank)))))
(error "Right operand to rank may only be a scalar or vector of 2-3 dimensional indices."))
(when (and alpha (eq :monadic (getf fn-meta :valence)))
(error "Function composed with [⍤ rank] may not have a left argument."))
(when (and (not alpha) (eq :dyadic (getf fn-meta :valence)))
(error "Function composed with [⍤ rank] must have a left argument."))
(cond ((eq omega :get-metadata)
(append fn-meta (list :composed-by #\⍤)))
((and operand-lex-ref (char= #\⍉ operand-lex-ref))
;; compose the [⍉ permute] function
(assign-rank (apply function omega (when alpha (list alpha)))
omrank))
((and (getf fn-meta :on-axis)
(or (= 1 (if alpha ocrank omrank))
(and operand-lex-ref (char= #\⌽ operand-lex-ref))))
;; if the composed function is directly equivalent to a function that operates
;; across an axis, as ⊖⍤1 and ⌽⍤1 are to ⌽, just reassign the axis
(assign-rank (apply function omega (when alpha (list alpha)))
omrank))
(t (let* ((orankdelta (- orank (if alpha ocrank omrank)))
(odivs (when (<= 0 orankdelta) (make-array (subseq odims 0 orankdelta))))
(odiv-dims (when odivs (subseq odims orankdelta)))
(arankdelta (- arank acrank))
(adivs (when (and alpha (<= 0 arankdelta))
(make-array (subseq adims 0 arankdelta))))
(adiv-dims (when adivs (subseq adims arankdelta))))
(flet ((generate-divs (div-array ref-array div-dims)
(let ((ref-indexer (varray::generator-of ref-array)))
(dotimes (i (size div-array))
(setf (row-major-aref div-array i)
(if (zerop (rank div-array)) ref-array
(if (not div-dims) (funcall ref-indexer i)
(make-instance 'varray::vader-subarray-displaced
:shape div-dims :index i
:base ref-array))))))))
(when odivs (generate-divs odivs omega odiv-dims))
(if alpha (progn (when adivs (generate-divs adivs alpha adiv-dims))
(if (not (or odivs adivs))
;; if alpha and omega are scalar, just call the function on them
(funcall function omega alpha)
(let ((output (make-array (shape-of (if (> (rank-of odivs)
(rank-of adivs))
odivs adivs)))))
(dotimes (i (size output))
(let ((this-odiv (if (not odivs)
omega (if (zerop (rank odivs))
(aref odivs)
(row-major-aref odivs i))))
(this-adiv (if (not adivs)
alpha (if (zerop (rank adivs))
(aref adivs)
(row-major-aref adivs i)))))
(setf (row-major-aref output i)
(funcall function this-odiv this-adiv))))
(make-instance 'vader-mix :base output :nested t
:axis (max (rank odivs)
(rank adivs))))))
(if (not odivs) ;; as above for an omega value alone
(funcall function omega)
(let ((output (make-array (dims odivs))))
(dotimes (i (size output))
(setf (row-major-aref output i)
(funcall function (row-major-aref odivs i))))
(make-instance 'vader-mix :base output :nested t
:axis (varray::rank-of output))))))))))))
(defun operate-atop (right-fn left-fn)
"Generate a function applying two functions to a value in succession. Used to implement [⍤ atop]."
(lambda (omega &optional alpha environment blank)
(declare (ignore environment blank))
(if alpha (funcall left-fn (funcall right-fn omega alpha))
(funcall left-fn (funcall right-fn omega)))))
(defun operate-to-power (fetch-determinant function)
"Generate a function applying a function to a value and successively to the results of prior iterations a given number of times. Used to implement [⍣ power]."
(lambda (omega &optional alpha environment blank)
(declare (ignore environment blank))
(if (eq omega :get-metadata)
(list :inverse (let* ((raw-determinant (funcall fetch-determinant))
(determinant
(if (shape-of raw-determinant)
(error "The right operand of [⍣ power] must be either a ~a"
"function or a scalar integer.")
(if (functionp raw-determinant)
(lambda (omega alpha)
(zerop (vrender (funcall raw-determinant omega alpha))))
(vrender raw-determinant))))
(inverse-function (if (not (numberp determinant))
(getf (if alpha (funcall function :get-metadata nil)
(funcall function :get-metadata))
:inverse))))
(if (numberp determinant)
(operate-to-power (lambda () (- determinant)) function)
(operate-to-power fetch-determinant inverse-function))))
(let ((raw-determinant (funcall fetch-determinant)))
(if (functionp raw-determinant)
;; if the determinant is a function, loop until the result of its
;; evaluation with the current and prior values is zero
(let ((determinant (lambda (omega alpha)
(let ((raw-result (funcall raw-determinant omega alpha)))
(if (shape-of raw-result)
(error "The qualifier to end evaluation of a [⍣ power]-composed ~a"
"function must be an integer.")
(zerop (vrender raw-result)))))))
(let ((arg omega) (prior-arg omega))
(loop :for index :from 0
:while (or (zerop index)
(funcall determinant prior-arg arg))
:do (setq prior-arg arg
arg (if alpha (funcall function arg alpha)
(funcall function arg))))
arg))
;; otherwise, run the operand function on the value(s) a number
;; of times equal to the absolute determinant value, inverting
;; the operand function if the determinant value is negative
(let ((determinant (if (shape-of raw-determinant)
(error "The right operand of [⍣ power] must be either a ~a"
"function or a scalar integer.")
(vrender raw-determinant))))
(let ((arg omega)
(function2 (if (<= 0 determinant)
function (if alpha (getf (funcall function :get-metadata nil) :inverse)
(getf (funcall function :get-metadata) :inverse)))))
(dotimes (index (abs determinant))
(setq arg (if alpha (funcall function2 arg alpha)
(funcall function2 arg))))
arg)))))))
(defun operate-at (right left index-origin)
"Generate a function applying a function at indices in an array specified by a given index or meeting certain conditions. Used to implement [@ at]."
(lambda (omega &optional alpha environment blank)
(declare (ignorable alpha environment blank))
(let ((orank (varray::rank-of omega))
(left-fn (when (functionp left) left))
(right-fn (when (functionp right) right)))
(if (and left-fn (or right-fn (= 1 (varray::rank-of right))
(not (or (arrayp right) (varray::varrayp right)))))
(if right-fn (make-instance 'vader-select
:base omega :index-origin index-origin
:assign alpha :calling left-fn :assign-if right-fn)
(let* ((mod-array (make-instance
'vader-select :base omega :index-origin index-origin
:argument (cons right (loop :for i :below (1- orank)
:collect nil))))
(out-sub-array (if alpha (funcall left-fn mod-array alpha)
(funcall left-fn mod-array))))
(make-instance 'vader-select
:base omega :index-origin index-origin :nested t
:assign (funcall (if (and (not (or (arrayp right) (varrayp right)))
(> 2 orank)
(not (zerop (varray::rank-of out-sub-array))))
(lambda (omega)
(make-instance 'vader-enclose :base omega))
#'identity)
;; enclose the right operand if it's not an array,
;; omega has a rank greater than 2 and the operands' output
;; has a rank greater than 1; this is needed for i.e.
;; ∪∘1@5⊢(2 3) (3) (2 4) (1 5) (3)
;; TODO: can this logic be refined?
out-sub-array)
;; IPV-TODO: removing this force render causes a bug, figure it out
:argument (cons right (loop :for i :below (1- orank) :collect nil)))))
(if right-fn (make-instance 'vader-select
:base omega :index-origin index-origin :assign-if right-fn
:calling left-fn :assign (if left-fn alpha left))
(make-instance 'vader-select
:base omega :index-origin index-origin
:calling left-fn :assign (if left-fn alpha left)
:argument (cons right (loop :for i :below (- orank (rank-of right))
:collect nil))))))))
(defun operate-stenciling (right-value left-function)
"Generate a function applying a function via (aplesque:stencil) to an array. Used to implement [⌺ stencil]."
(lambda (omega &optional alpha environment blank)
(declare (ignore alpha environment blank))
;; TODO: make an alternate stencil that's auto-mixed
(let ((lfn-meta (funcall left-function :get-metadata)))
(if (and (eq :beside (getf lfn-meta :operator-type))
(and (characterp (getf (getf lfn-meta :right-meta) :lexical-reference))
(char= #\⊂ (getf (getf lfn-meta :right-meta) :lexical-reference)))
(and (characterp (getf (getf lfn-meta :left-meta) :lexical-reference))
(char= #\⊢ (getf (getf lfn-meta :left-meta) :lexical-reference))))
(make-instance 'vacomp-stencil :omega omega :right right-value
:left (lambda (o a) (declare (ignore a)) o))
(let ((stenciled (make-instance 'vacomp-stencil
:omega omega :right right-value :left left-function)))
(make-instance 'vader-mix :base (vrender stenciled)
:nested nil :axis (rank-of stenciled)))))))